The Variational Method: An Example

B. Ramachandran

Let us try to solve the hydrogen atom problem using the variational method, using the trial function

$$\varphi(r) = Ne^{-br}$$

for the ground state, where \(N \) is the normalization constant and \(b \) is the adjustable variational parameter. The Hamiltonian, in atomic units, is

$$\hat{H} = -\frac{1}{2} \left[\frac{1}{r^2} \frac{\partial}{\partial r} r^2 \frac{\partial}{\partial r} \right] - \frac{1}{r}. \quad (1)$$

If the trial function is normalized, the variational energy \(W \) is given by

$$W = \int_0^\infty \varphi^* \hat{H} \varphi r^2 \, dr \int_0^\pi \sin \theta \, d\theta \int_0^{2\pi} \, d\phi. \quad (2)$$

Let us first determine the normalization constant by requiring that

$$\int_0^\infty \varphi^* \varphi (r) r^2 \, dr \int_0^\pi \sin \theta \, d\theta \int_0^{2\pi} \, d\phi = 1,$$

or

$$1 = 4\pi |N|^2 \int_0^\infty r^2 e^{-2br} \, dr,$$

where we have evaluated the integrals over the angles \(\theta \) and \(\phi \) to get the factor of \(4\pi \). Now, from tables of standard integrals, we find that

$$\int_0^\infty z^n e^{-ax} \, dz = \frac{n!}{a^{n+1}}; \quad n > -1, \ a > 0. \quad (3)$$

Substituting \(z = r, \ n = 2 \) and \(a = 2b \), we get

$$\int_0^\infty r^2 e^{-2br} \, dr = 1/(4b^3),$$

which leads to

$$4\pi |N|^2 \int_0^\infty r^2 e^{-2br} \, dr = \frac{\pi}{b^3}, \quad \text{or} \quad \frac{1}{\sqrt{\pi}}b^{3/2},$$

The next step is to evaluate the integral in Eq. (2). We first find the result of the Hamiltonian operator acting on the trial function:

$$\hat{H} \varphi = -\frac{1}{2} \left[\frac{1}{r^2} \frac{\partial}{\partial r} r^2 \frac{\partial}{\partial r} \right] \varphi - \frac{\varphi}{r} = \frac{b^{3/2}}{2\sqrt{\pi}} \left[\frac{b}{r^2} \left(2r - r^2 b \right) - \frac{1}{r} \right] e^{-br} = \frac{b^{3/2}}{\sqrt{\pi}} \left[\frac{b - 1}{r} - \frac{b^2}{2} \right] e^{-br}.$$
Now, we evaluate the integral in Eq. (2) using the result given in Eq. (3).

\[
W = 4\pi \int_0^\infty \varphi^* \hat{H} \varphi r^2 dr = 4b^3 \int_0^\infty \left[\frac{b - 1}{r} - \frac{b^2}{2} \right] e^{-2br^2} r^2 dr
\]

\[
= 4b^3 \left[(b - 1) \left(\frac{1}{(2b)^2} \right) - \frac{b^2}{2} \left(\frac{2}{(2b)^3} \right) \right]
\]

\[
= \frac{b^2}{2} - b. \tag{4}
\]

Recall that the next step in the variational method is to minimize \(W\) with respect to the adjustable (variational) parameters. Let us now plot \(W\) as a function of the parameter \(b\) to see where the minimum value of \(W\) lies.

Plot of \(W\) as a function of the parameter \(b\).

It is clear that the value of \(b\) corresponding to the minimum in \(W\) is \(b = 1\) (in atomic units). We can reach the same conclusion by requiring that \(\frac{\partial W}{\partial b} = 0\), which gives us

\[
\frac{\partial}{\partial b} \left[\frac{b^2}{2} - b \right] = b - 1 = 0, \quad \text{or} \quad b = 1.
\]

Comparing the trial function to the exact ground state wave function, we see that the parameter \(b\) is, in fact, \(Z\), the nuclear charge. Therefore, the result \(Z = 1\) for hydrogen is to be expected. Corresponding to the optimum value of the parameter \(b = 1\), we get \(W = -1/2\) hartree, which is the exact ground state energy of the hydrogen atom. We get this result, of course, because we started with a trial function that had the exact form of the correct ground state wave function. If we had started with a Gaussian type function instead, say, \(\varphi = Ne^{-br^2}\), we would obtain

\[
W = \frac{3b}{2} - 2 \left(\frac{2b}{\pi} \right)^{1/2}. \tag{5}
\]

As an exercise, find the optimum value of \(b\) and verify that \(W \geq E\), where \(E\) is the exact ground state energy of \(-1/2\) hartree.