Magnitudes of the 1s wavefunctions on hydrogen atoms A and B are $3a_0$ apart, but not interacting. The abscissa is the distance from atom A along the internuclear axis in units of a_0.

(a) Magnitude of the normalized molecular orbital ψ_g when protons A and B are separated by $3a_0$. (b) Magnitude of the normalized molecular orbital ψ_u. (c) Magnitude of ψ_g^2. (d) Magnitude of ψ_u^2.
Plot of the electron density in the xy plane for the hydrogen molecule ion H_2^+ with (a) a $1s$ sigma bonding orbital and (b) a $1s$ sigma antibonding orbital. Note the buildup of electron density between the nuclei with the bonding orbital. Also note that with the antibonding orbital the electron density is zero along a line perpendicular to the line between the nuclei and halfway between the nuclei. The internuclear axis is along x.
Formation of pairs of molecular orbitals from pairs of atomic orbitals. The solid points represent nuclei A and B.