
#### CHEM 481 LAB 4. Vibrational Analysis & FTIR. Name:

For a molecule with N atoms, 3N cartesian coordinates are needed to describe its configuration. Another way of describing the motion of the atoms is in terms of the normal modes of the system:

- 3 translations
- 3 rotations and 3N-6 vibrations (nonlinear molecules)
- 2 rotations and 3N-5 vibrations (linear molecules)

#### 1. How many vibration modes are there for:

#### H2O: NH3: C2H2: C2H4:



Can be symbolised as  $\Delta x_1$ ,  $\Delta y_1$ ,  $\Delta z_1$ ,  $\Delta x_2$ ,  $\Delta x_2$ ,  $\Delta z_2$ ,  $\Delta z_3$ ,  $\Delta x_3$ ,  $\Delta z_3$ .

## 2) Calculate Reducible Representations (3N) for H2O: Normal Coordinate Method

Carry out the symmetry operations of  $C_{2v}$  on this set, we will obtain a transformation matrix for each operation. E.g.  $C_2$  effects the following transformations:  $x_1 \rightarrow -x_2$ ,  $y_1 \rightarrow -y_2$ ,  $z_1 \rightarrow z_2$ ,  $x_2 \rightarrow -x_1$ ,  $y_2 \rightarrow -y_1$ ,  $z_2 \rightarrow z_1$ ,  $x_3 \rightarrow -x_3$ ,  $y_3 \rightarrow -y_3$ ,  $z_3 \rightarrow z_3$ .

## a) Calculate the $\chi$ for each matrix in the operations of E, $C_2,\sigma_{xz}$ and $\sigma_{yz}$

|                     | χ |
|---------------------|---|
| E                   |   |
| E<br>C <sub>2</sub> |   |
| $\sigma_{xx}$       |   |
| $\sigma_{vz}$       |   |

### b) What are characters of the reducible representation of all modes in water:

| 4-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7 |               |   |       |               |               |  |  |  |
|-----------------------------------------|---------------|---|-------|---------------|---------------|--|--|--|
|                                         |               | E | $C_2$ | $\sigma_{xz}$ | $\sigma_{yz}$ |  |  |  |
| i                                       | $\Gamma_{3N}$ |   |       |               |               |  |  |  |

## c) Use Reduction Formula to find the number of each representation

The reduction can always be achieved using the reduction formula. The number of times an irrep occurs in the reducible

$$n_i = \frac{i}{h} \sum_c g_c \chi_i \, \chi_r$$
  $h =$  the order of the group

 $\chi_{\rm r}$  = character of reducible representation

 $\chi_i$  = character of irreducible representation

 $g_c = no.$  of symmetry operations in the class

(i.e. the number of equivalent operations, e.g. for  $C_2 g_c = 1$ 

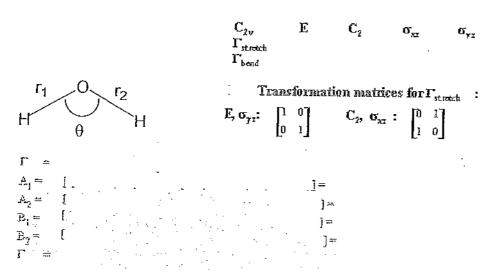
#### Find

$$\begin{array}{l} \Gamma_{3N} = \\ A_1 = 1/4 \left[ (9 \times 1 \times 1) + (-1 \times 1 \times 1) + (1 \times 1 \times 1) + (3 \times 1 \times 1) \right] = 3 \\ A_2 = I \\ B_1 = I \\ B_2 = I \\ \Gamma_{3N} = 3A_1 + \end{array}$$

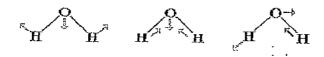
Using 3N (translation + rotation + vibration) and character table, find  $\Gamma_{\rm Rot}$  ,  $\Gamma_{\rm Trans}$ ,  $\Gamma_{T+R}$  and  $\Gamma_{Vib}$ 

 $\Gamma_{\rm rot}$ :

 $\Gamma_{\text{trans}}$ :


 $\Gamma_{T+R} =$ 

 $\Gamma_{Vib} = \Gamma_{3N} - \Gamma_{T+R}$ 


## d) Using the character table below find which of the above normal modes would be IR and Raman active or inactive?

| C2v            | E | $C_2$ | σ <sub>v</sub> (xz | ) oʻ <sub>v</sub> (yz) |                   |                                 |              |       |
|----------------|---|-------|--------------------|------------------------|-------------------|---------------------------------|--------------|-------|
| $A_1$          | 1 | 1     | I                  | 1                      | z                 | $x^2, y^2, z^2$                 | $\mathbb{R}$ | Raman |
| A <sub>2</sub> | 1 | 1     | - 1                | -1                     | $R_z$             | ху                              |              | Raman |
| $\mathbb{B}_1$ | 1 | - 1   | 1                  | -1                     | x, Ry             | $x^2$ , $y^2$ , $z^2$ $xy$ $xz$ | IR           | Raman |
| В2             | 1 | - 1   | - 1                | 1 ,                    | y, R <sub>x</sub> | yz.                             |              | Raman |

# 3) Calculate Reducible Representations ( $\Gamma$ ) bond vectors ${\bf r}$ and ${\boldsymbol \theta}$ for $H_2O$ : Internal Coordinate Method



Assign the symmetry labels to following vibrations and identify them as stretching or bending a which one would have lover energy bending or stretching vibrations?



4) Use internal coordinate method to get the CO stretching vibrations in the handout given.

# Procedure to Run Mattson Instruments Genesis II FT-IR Instrument

Genesis II FT-IR Instrument Description of Instrument

Mattson Instruments Genesis II FTIR spectrometer system designed for routine sample analysis in the QA/QC environment. The Genesis II features 1 cm<sup>-1</sup> resolution in either near or mid infrared configurations with the choice of **room temperature** detector. For easy access, there is a sample hatch to the sliding sample compartment cover. Genesis II FTIR spectrometer is compatible with all standard sampling techniques for powders, liquids and gases to provide additional flexibility. The First software provides full IQ, OQ and PQ validation for laboratories subject to regulatory review.

15. Attach your Spectra with spectral assignment to the report.

# Sample Preparation Methods

- I. Liquid Solution Samples:
- 2. KBr Pellets:
- 3. Solid Samples: Diffuse Reflectance:
- 4. Nujol/Fluorolube Mull:
- 5. Thin Film Support:
- 6. Gas Samples

Using Internal coordinate method show that cis-[M(CO)<sub>4</sub>L<sub>2</sub>] belonging to  $C_{2v}$  point group is expected to show 4  $\nu_{co}$  stretching vibrations with symmetry representation 2  $a_1$ ,  $b_1$  and  $b_2$ , and trans-[M(CO)<sub>4</sub>L<sub>2</sub>] belonging to  $D_{4h}$  point group is expected to show only I  $\nu_{co}$  stretching vibration with the symmetry representation  $e_u$ .

TABLE 16-7 NUMBER AND TYPE OF INFRARED STRETCHING FREQUENCIES EXPECTED FOR COMMON METAL CARBONYL COMPLEXES

| Molecule                                                     | Point<br>Group    | Number of<br>vco Expected | Symmetry of $v_{\mathrm{CO}}$ Bands |
|--------------------------------------------------------------|-------------------|---------------------------|-------------------------------------|
| 1. M(CO) <sub>5</sub> L                                      | C <sub>4v</sub>   | 3                         | 20 <sub>1</sub> + e                 |
| 2. cis-[M(CO) <sub>4</sub> L <sub>2</sub> ]                  | $C_{2v}$          | 4                         | $2a_1 + b_1 + b_2$                  |
| 3. trans-[M(CO) <sub>4</sub> L <sub>2</sub> ]                | $D_{4h}$          | 1                         | $e_u$                               |
| 4. cis-[M(CO) <sub>3</sub> L <sub>3</sub> ]                  | $C_{3\nu}$        | 2                         | $\theta_1 + e$                      |
| 5. \[ \text{trans-[M(CO) <sub>3</sub> L <sub>3</sub> ]}      | $C_{2v}$          | 3                         | $2a_1 + b_2$                        |
| 6. cis-[M(CO) <sub>2</sub> L <sub>2</sub> X <sub>2</sub> ] X | $C_{2v}$          | 2                         | $s_1 + b_2$                         |
| 7. $X \downarrow L$ trans- $[M(CO)_2L_2X_2]$                 | $D_{2h}$          | 1                         | $b_{1u}$                            |
| 8. M(CO)₄L                                                   | $C_{3v}$          | 3                         | $2s_1 + e$                          |
| 9 M(CO)₄L                                                    | $C_{2v}$          | 4                         | $2a_1 + b_1 + b_2$                  |
| D. M(CO) <sub>3</sub> L <sub>2</sub>                         | $D_{3h}$          | 1                         | e'                                  |
| . L M(CO) <sub>3</sub> L <sub>2</sub>                        | $C_{\varepsilon}$ | 3                         | 2a' + a"                            |