X-Ray Analysis

X-rays

 Originally discovered by Wilhelm Roetgen (1845-1923) in the nineteenth century, X-rays have become one of the most useful applications of spectroscopy in both science and medicine.

X-Ray Spectroscopy

- Emission
- Absorption
- Diffraction

X-ray spectroscopy is a common analytical technique with a broad range of applications, particularly in determining crystal structure and elemental analysis of solid samples.

Diffraction

wavelengths

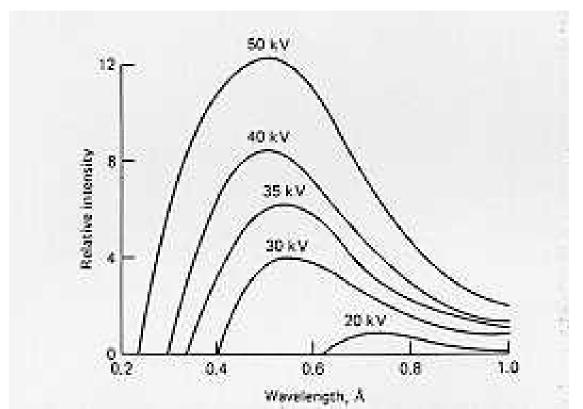
0.1 = > 25A

Diffraction

Powder Pattern

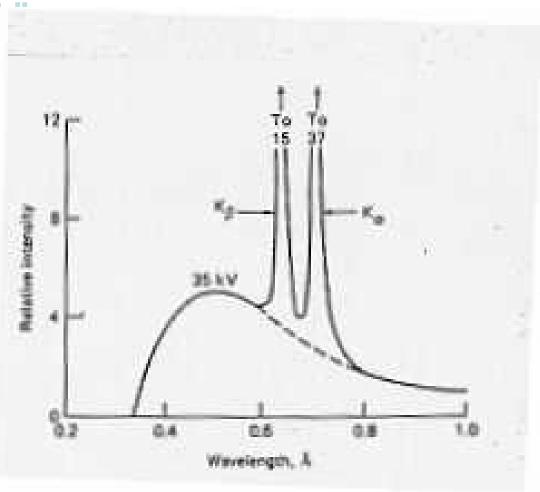
- qualitative analysis => ASTM database
- isostructural

X-ray for Analytical Purposes


- X-ray for Analytical Purposes generated by:
- 1. bombardment of metal target by a beam of high energy electrons
- 2. exposure of a substance to a primary beam of X-rays in order to generate a secondary beam of fluorencent X-rays
- 3. radioactive source whose decay process results in X-ray emission

Production of X-rays

- The electromagnetic radiation resulting from inner orbital electron transitions or deceleration of high-energy electrons is referred to as X-rays.
- X-ray tubes
- Radio active materials
- Synchrotron source


X-ray Tubes for Analytical Purposes

"Distribution of continuous radiation from an X-ray tube with a tungsten target. The numbers above the curves indicate the accelerating voltages."

X-ray for Analytical Purposes "Line spectrum for a tube with a molybdenum

X-ray for Analytical Purposes

Short wavelength limit of continuum function of accelerating voltage, not metal

 $\lambda_o = 12,398/V$ where V => volts

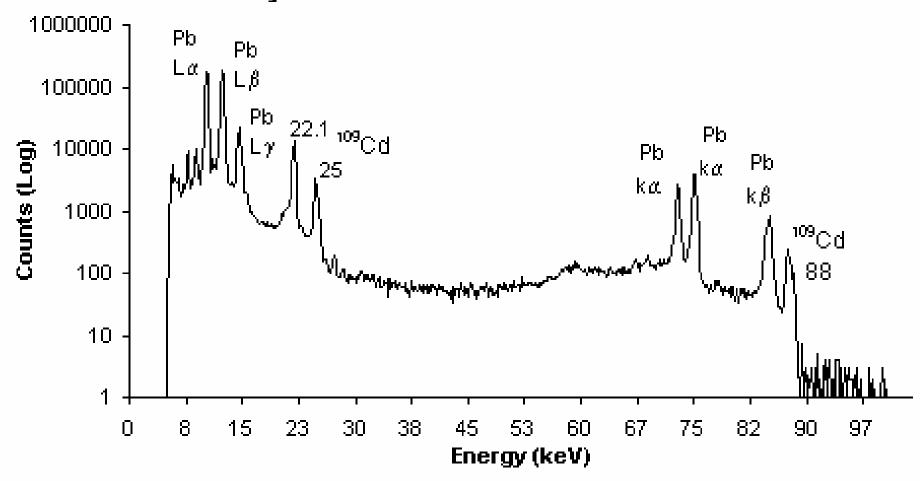
X-ray for Analytical Purposes

- 2 series of lines for all metals z > 23 K & L series
- 1 series of lines for all metals z < 23 K series
- line spectrum: min accelerating V to produce increases with Z

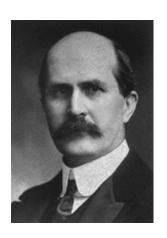
X-ray Fluorescence Spectroscopy-

 X-ray fluorescence is a spectroscopic method that is commonly used for solids in which secondary x-ray emission is generated by excitation of a sample with xrays. The x-rays eject inner-shell electrons. Outershell electrons take their place and emit photons in the process. The wavelength of the photons depends on the energy difference between the outer-shell and inner-shell electron orbitals. The amount of x-ray fluorescence is very sample dependent and quatitative analysis requires calibration with standards that are similar to the sample matrix.

XRF Instrumentation


 Solid samples are usually powdered and pressed into a wafer or fused in a borate glass. The sample is then placed in the sample chamber of an XRF spectrometer, and irradiated with a primary X-ray beam. The X-ray fluorescence is recorded with either an X-ray detector after wavelength dispersion or with an energy-dispersive detector.

X-ray Fluorescence Spectroscopy- XRF


XRF Spectrum

X-Ray Fluorescence of Lead from 109 Cd

History of Diffraction

William Bragg and his son Lawrence

X-ray Diffraction

 William Bragg and his son Lawrence in 1913-1914 founded the analysis of crystal structure by means of X-rays. If the fundamental discovery of the wave aspect of X-rays, as evidenced by their diffraction in crystals, was due to von Laue and his collaborators, it is equally true that the use of X-rays as an instrument for the systematic revelation of the way in which crystals are built was entirely due to the Braggs.

How Diffraction Works

Diffraction of X-Rays

Bragg's Law

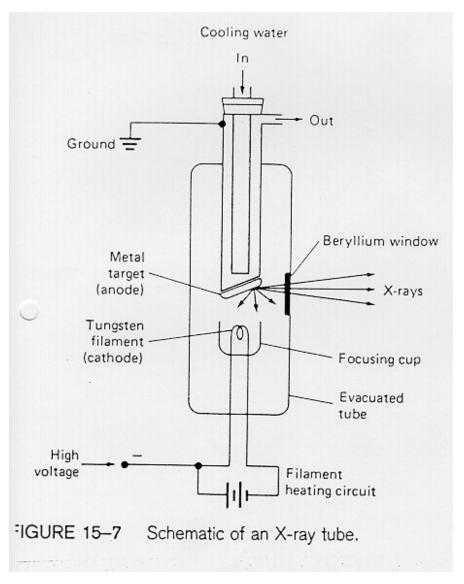
when AP + PC = $n\lambda$ scattered radiation will be "in phase"

$$AP = PC = d \sin \theta$$

$$n \lambda = 2 d \sin \theta$$

Diffraction of X-Rays

Bragg's Law "Diffraction of X-rays by a


FIGURE 15-6 Diffraction of X-rays by a crystal.

Instrument Components

- 5 basic components
- 1. source
- 2. device for restricting wavelength range
- 3. sample holder
- 4. radiation detector
- 5. signal processor and readout

Sources

"Schematic of an X-ray tube."

"Monochromator"

Device for restricting wavelength range

- filter => thin metal, element to the left in the Periodic Table
- collimators & slits

X-ray Monochromator

"An X-ray monochromator and detector. Note the angle of the detector with respect to the beam (20) is twice that of the crystal face. For absorption analysis, the source is an X-ray tube, and the sample is located in the beam as shown. For emission work, the sample becomes a fluorescent source of X-rays as shown in the inset."

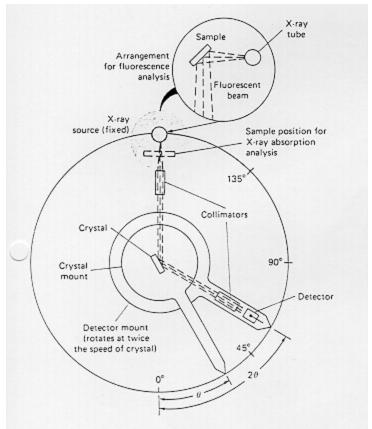
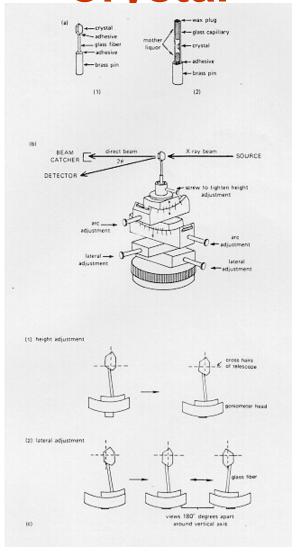
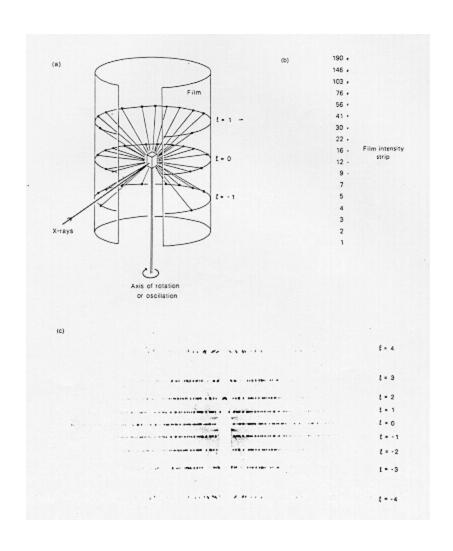



FIGURE 15–9 An X-ray monochromator and detector. Note that the angle of the detector with respect to the beam (2θ) is twice that of the crystal face. For absorption analysis, the source is an X-ray tube and the sample is located in the beam as shown. For emission work, the sample becomes a fluorescent source of X-rays as shown in the insert.

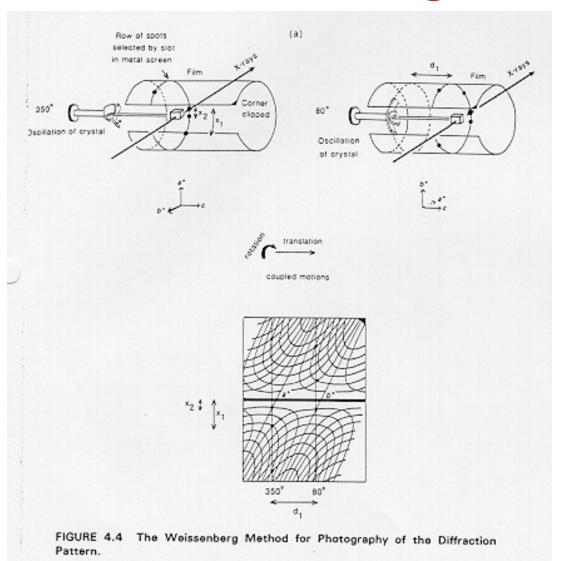
Sample Holder

- as crystal moves θ , detector moves 2θ
- goniometer head for single crystal
- cup for powder sample

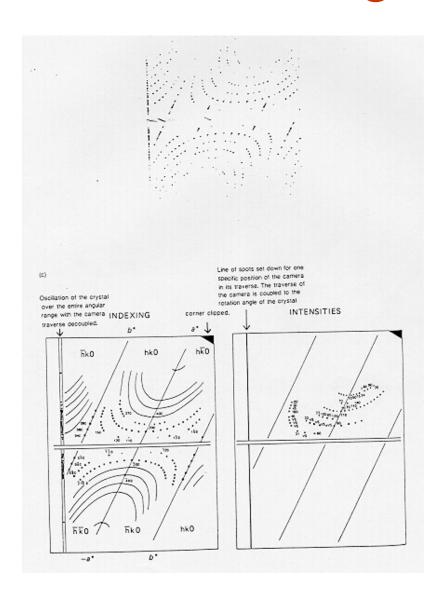
Goniometer Head for Single Crystal


Radiation Detector

X-ray film


now used mainly for unit cell
dimension and space group
determinations

- Precession camera
- Weissenburg


Weissenburg

Weissenburg

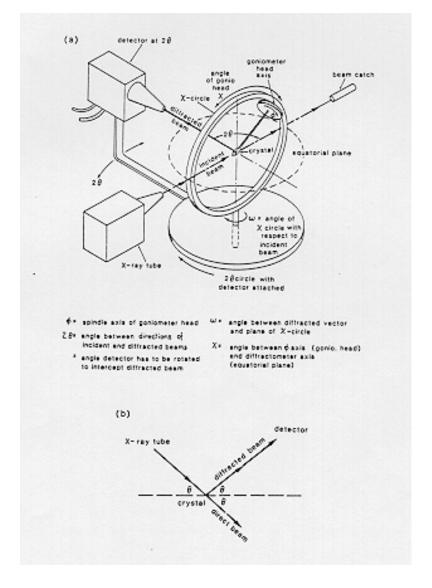
Weissenburg

Radiation Detector

Electrical Detectors

- 1. gas filled detectors
 - gas is ionized by X-rays, conducts
- 2. scintillation counters
 - X-rays strike phosphrs which give off light
 - originally => counted flasks
 - now => photomultiplier tube used to detect light

Radiation Detector


Electrical Detectors

- 3. semiconductor detectors
 - lithium drifted silicon detectors
 - charge-coupled device (CCD)

Signal processor & Readout devices

high speed computer

Automatic Diffractometer

X-ray Diffraction

Information provided by X-ray diffraction:

- 1. Declare that structures are isostructural.
- 2. Identify unknowns
- 3. Determine crystal structure

Isostructural

- Use powder pattern
- measure Bragg angle, θ
- calculate d spacing
- match d spacing with known structure

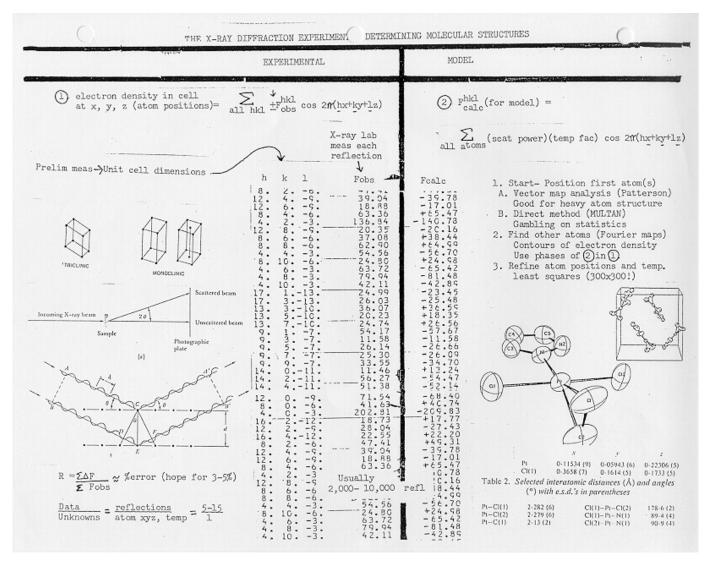
(III)(ОН)(С ₁ О ₄) ·3Н ₂ О (2)	V(III)(OH)(C ₄ O ₄) -3H ₂ O	V(III)(OH)(C ₄ O ₄) ·2H ₂ O	V(III)(OH)(C ₄ O ₄)
7.72	7.72	7.57	
6.76	6.61		6.65
6.40	6.37	6.28	
6.16	6.18		
5.75	5.72	5.70	5.51
5.19	5.17	5.17	5.04
4.56	(4.53)		
4.25	4.24	4.23	
3.95	3.96	3.95	3.93
3.70	3.70	3.66	
3.43	3.44	3.41	3.28
3.25	3.23	3.22	
3.13	3.14	3.12	
3.04	3.03	3.03	
2.84	2.84	2.82	
2.74	2.76	2.73	
2.68	2.66	2.66	
2.58	2.58	2.57	2.54
2.48	(2.49) (2.46)	2.48	2.45
2.41	2.39	2.40	
2.29	2.29	2.29	
2.16	2.15	2.15	


Identify Unknowns

- use powder pattern
- measure Bragg angle, θ
- calculate d spacing
- match d spacing with ASTM data

Data Sheet for Powder Data

	5. 1 of b	1162	
20 angle	End of run To	_d_	ASTM card+ 1-1293
24.3	12-2 (12°12') 0.21132	3.65	3.65
32.95	16.48 (16°29') 0.28374	2.71	2.70
36.2	18.1 (18°6') 0,31068	248	2.47
41.25	20.63(20°38') 0.35239	2.19	2.18
49.85	2498 (24°59′) 0.42235	1.83	1.83
54.0	27.0 (27°0°) 0.45399	1.70	1.69
63.3	31.73 (31°42') 0.52547	1.46	1.47
65.25	·32.63 (32°38') 0.53926	1.43	1.43
		1	V203
			. 2.3


ASTM Data Base

Determine Crystal Structure

- use single crystal data
- calculate d spacing, unit cell dimensions
- index reflections
- propose structure
- match calculated data to experimental data

Single Crystal X-ray Analysis

Electron Density Data

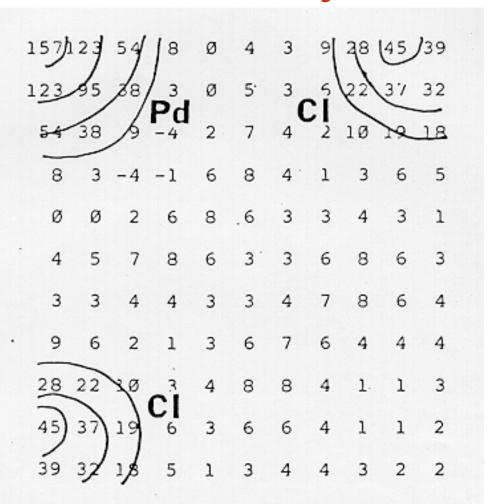
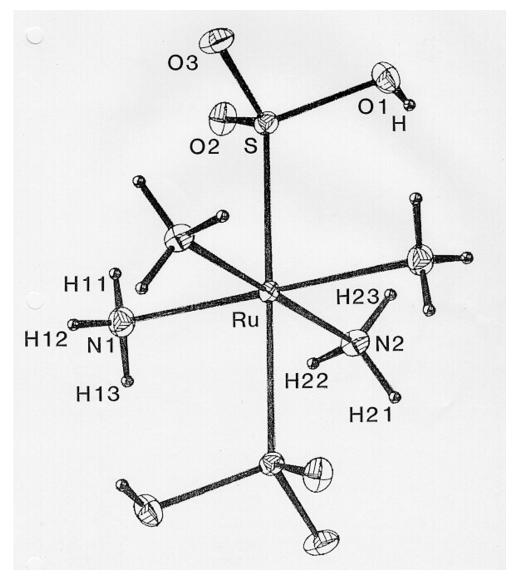



Figure 2. Section of electron density map showing Pd and Cl atoms.

Single Crystal X-ray Analysis

```
[(u (phen)2 (4-NH2-py)) (PF6)2) Octahedred Crystal
Exmula: au (C12 H8 N2), (C5 H6 N2) (PF6),
 Space Group: Orthorhombic Poca (#61)
                 a = 32.574(7) b = 16.012(3) c = 13.648(3)
                  L=B=8=90.0°
                  V = 7.118,5 (6)
                                    unit cell volume
                  2 = 8.0 number of neolecules / unit cell
                  M= 7.922 absorption coefficient
                  P = 1.508 calculated density
 Programs:
                            START
                            exposure time 53.0 hrs change in atandards - 1.4%
                STOPLT
  0---19
l -16→0
                           Removed 273 from centering collection
                REJECT
sizehedral
                         h \rightarrow l / l \rightarrow h / k \rightarrow -k
.48 x .52 x .54 x .54
                ROTATE
 25 reflections
18° < 20 < 20°
3330 reflections
                REJECT
                           #1 (bglide) Okl: k=2n
ared wittim
                           #5 (cglide) hol; l=2n
                            #9 (a glide) hko, h=2n
592 reflections rejected
6303 reflections kept
 36
               PATTERSON
                              Heavy atom vector search
```

Trans-Bisbisulfitetetraamineruthenium(II)

