Name:	:	

- (1) (10 pts) The ultraviolet spectrum of benzonitrile shows a primary absorption band at 224 nm and a secondary band at 271 nm. The spectrum is obtained in a 1 cm pathlength cuvette.
 - (a) a solution of benzonitrile in water with a 0.1 mmolar concentration is examined at a wavelength of 224 nm. The absorbance is determined to be A = 1.30 What is the molar absorptivity of this band
 - (b) if the same solution is examined at 271 nm, what will be the absorbance reading, assuming that $\varepsilon = 1000$ for this band?
- (2) (10 pts) Match the steroid structures shown below to the following values of the UV-vis band maximum in hexane: A = 275 nm, B = 304 nm, C = 356 nm. Use both qualitative arguments, Woodward's rule predictions, and/or specific comparison spectral information that you have available. If you cite comparison spectra, you must give your literature reference or WWW URL.

$$C_9H_{14}$$
 C_9H_{14} C_9H_{14} C_9H_{14} C_9H_{14} C_9H_{14} C_9H_{14}

(3) (10 pts) Structure P below shows a very strong UV-vis maximum peak shift going from nonpolar to polar solvents, while M shows a modest shift. Give a brief explanation for this different behavior.

(4) (15 pts) for the hypothetical MO diagram shown below (molecule with C2v symmetry), work out the proper symmetry designation for the states formed by $2b_2$ to $3b_2$, $1b_1$ to $3b_2$, and $1a_2$ to $3b_2$ excitations. Which of these is/are symmetry allowed, and which symmetry forbidden? Show your work, using your group tables.

— 4b₂

- 3b₂

1a₂

______1b₁