NMR spectroscopy

Objectives

Introduction

The Physical Basis of the NMR Experiment

Magnetogyric ratio(g)

The Physical Basis of the NMR Experiment:

Larmour frequency

Slide 8

Quantum-mechanical treatment:

Spin quantum number(I)

z-component of the angular momentum J

The energy difference DE,

A Nuclei with I= 1/2 in a Magnetic Field

A Nuclei with I= 1 in a Magnetic Field

Semi-Quantum Mechanical Approach to the Basis of NMR,

Boltzmann Distribution of Spin States

Boltzman distribution

Example: Boltzman distribution

Saturation

Electron Spin Resonance Spectroscopy
ESR

ESR Spectroscopy

ESR of Mn2+

Electron Spin Resonance Spectroscopy
ESR

The macroscopic view

Vector representation

Slide 26

Slide 27

Slide 28

Slide 29

Slide 30

Slide 31

Slide 32

Slide 33

Slide 34

Slide 35

Slide 36

Slide 37

Slide 38

Slide 39

Slide 40

Slide 41

Slide 42

How NMR is achieved

Instrument and Experimental Aspects

Nuclear Magnetic Resonance

Common NMR solvents

NMR probes

Slide 48

Shielding and Deshielding of Nuclei

Chemical Shift

Slide 51

Slide 52

Slide 53

Slide 54

Slide 55

Slide 56

Slide 57

Spin-Spin Coupling

Spin-Spin Coupling

Slide 60

Slide 61

Slide 62

The types of information accessible via high resolution NMR include

Multinuclear NMR

How NMR Signals are Created, Relaxation

FT-NMR Experimental Method

Data Treatment

Slide 68

Slide 69

Fourier Transformation

Fourier Transformation- FT

Slide 72

Slide 73

Slide 74

Slide 75

Slide 76

The Proton NMR

Slide 78

Simplification of proton NMR Spectra

Carbon NMR Spectroscopy

2D NMR

Slide 82

Slide 83

2D Homonuclear Correlated NMR Experiments

Slide 85

Slide 86

Slide 87

Hetero- 2D Nuclear Correlated NMR Experiments

Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging
(MRI)

Functional Nuclear magnetic resonance(FMRI)