NMR spectroscopy
Objectives
Introduction
The Physical Basis of the
NMR Experiment
Magnetogyric ratio(g)
The Physical Basis of the
NMR Experiment:
Larmour frequency
Slide 8
Quantum-mechanical
treatment:
Spin quantum number(I)
z-component of the
angular momentum J
The energy difference DE,
A Nuclei with I= 1/2 in a
Magnetic Field
A Nuclei with I= 1 in a
Magnetic Field
Semi-Quantum Mechanical
Approach to the Basis of NMR,
Boltzmann Distribution of
Spin States
Boltzman distribution
Example: Boltzman
distribution
Saturation
Electron Spin Resonance
Spectroscopy
ESR
ESR Spectroscopy
ESR of Mn2+
Electron Spin Resonance
Spectroscopy
ESR
The macroscopic view
Vector representation
Slide 26
Slide 27
Slide 28
Slide 29
Slide 30
Slide 31
Slide 32
Slide 33
Slide 34
Slide 35
Slide 36
Slide 37
Slide 38
Slide 39
Slide 40
Slide 41
Slide 42
How NMR is achieved
Instrument and
Experimental Aspects
Nuclear Magnetic
Resonance
Common NMR solvents
NMR probes
Slide 48
Shielding and Deshielding
of Nuclei
Chemical Shift
Slide 51
Slide 52
Slide 53
Slide 54
Slide 55
Slide 56
Slide 57
Spin-Spin Coupling
Spin-Spin Coupling
Slide 60
Slide 61
Slide 62
The types of information
accessible via high resolution NMR include
Multinuclear NMR
How NMR Signals are
Created, Relaxation
FT-NMR Experimental
Method
Data Treatment
Slide 68
Slide 69
Fourier Transformation
Fourier Transformation-
FT
Slide 72
Slide 73
Slide 74
Slide 75
Slide 76
The Proton NMR
Slide 78
Simplification of proton
NMR Spectra
Carbon NMR Spectroscopy
2D NMR
Slide 82
Slide 83
2D Homonuclear Correlated
NMR Experiments
Slide 85
Slide 86
Slide 87
Hetero- 2D Nuclear
Correlated NMR Experiments
Magnetic Resonance
Imaging (MRI)
Magnetic Resonance
Imaging
(MRI)
Functional Nuclear
magnetic resonance(FMRI)