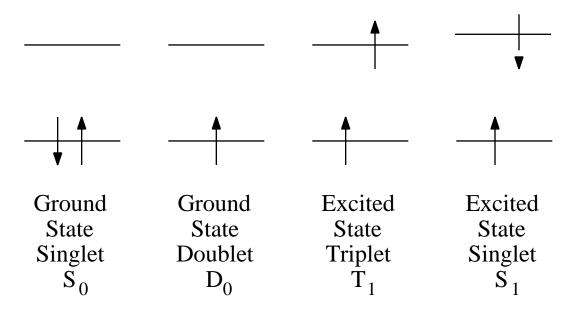
Luminescence Spectroscopy (Chapter 15)

fluorescence, phosphorescence, chemiluminescence all follow electronic excitation

Excited Electronic States:


Each electron has unique set of *quantum numbers* (Pauli Exclusion Principle)

- n principal (1s, 3p...)
- 1 angular momentum (l=0=s, l=1=p...)
- s spin
- m magnetic

Any two electrons in same orbital (n, l, m) must have different spins

$$s = +\frac{1}{2} \quad \text{or} \quad -\frac{1}{2}$$
$$S = \sum |s_i|$$

Multiplicity: 2S+1 (either 1, 2, 3...)

Multiplicities:

S₀ - common, diamagnetic (not affected by B fields)

 D_0 - unpaired electron, many radicals, two equal energy states

T₁ - rare, paramagnetic (affected by B fields)

(T₀ - doesn't exist, not ground state)

Energy(S_1)>Energy(T_1)

(difference is energy required to flip electron spin)

Example: Na ground state $1s^2 2s^2 2p^6 3s^1$ s=1/2, 2S+1=2, ground state doublet s electron

written 3(2S)

Two spin states of equal energy (up/down)

Na 1st excited state 1s² 2s² 2p⁶ 3p¹

D₁ written 3(2P)

BUT two spins states?

J (total ang. mom)=L+S or L-S
now
$$1s^2 2s^2 2p^6 3s^1 = 3(2P_{1/2})$$
 and $3(2P_{3/2})$

Term Symbol
$$^{2S+1}L_J$$

Na 3p \rightarrow 3s fluorescence two lines at 589.6 nm (2P_{3/2}) and 589.0 nm (2P_{1/2})

$$\left(S_1 \xrightarrow{\text{Emission}} S_0 \qquad S_1 \xleftarrow{\text{Absorption}} S_0\right)$$

What about Lifetimes?

• Absorption:

 $S_1 \leftarrow S_0$ very fast 10^{-15} - 10^{-13} s

Relaxation:

Resonant emission $S_1 \rightarrow S_0$ fast 10^{-9} - 10^{-5} s (fluorescence)

common in atoms

strong absorber \Rightarrow shorter lifetime

Non-resonant emission $S_1 \rightarrow S_0$ fast 10^{-9} - 10^{-5} s (fluorescence)

common in molecules

v. fast vibrational relaxation

red shifted emission (Stokes shift)

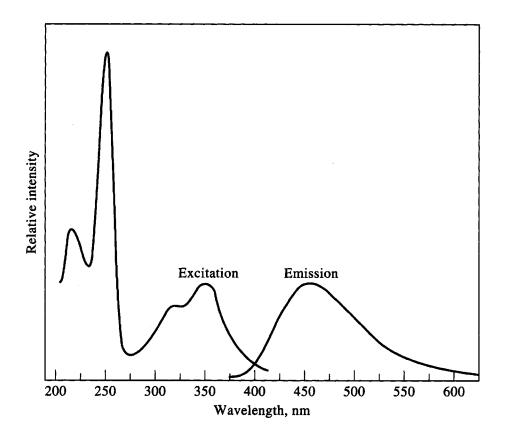


Fig. 15-2

Non-resonant emission $T_1 \rightarrow S_0$ slow 10-5-10 s (phosphorescence)

Transitions between states of different multiplicities are improbable "forbidden" (e.g. $T \leftarrow S$ or $T \rightarrow S$)

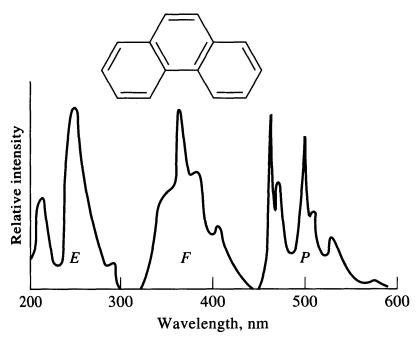


Fig. 15-3
phosphorescence
fluorescence
excitation

Internal Conversion: radiationless transition to lower state when

vibrational energy levels "match"

External Conversion: radiationless transition to lower state by

collisional deactivation

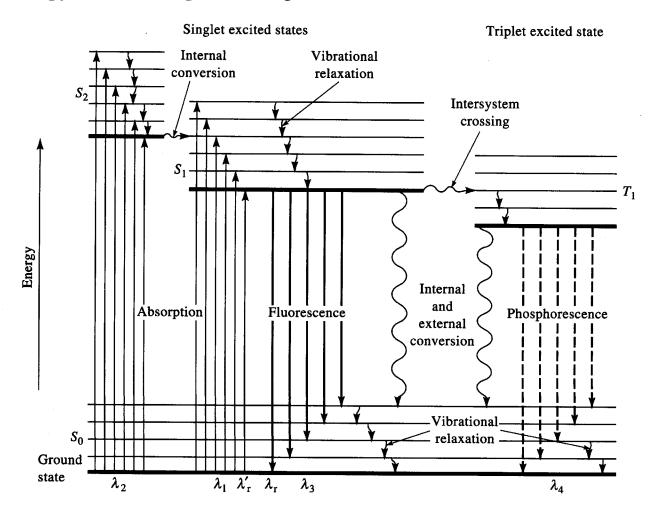
Intersystem Crossing: transition with spin change (e.g. S to T)

Fluorescence: emission not involving spin change (e.g.

 $S \rightarrow S$, $T \rightarrow T$), efficient, short-lived <10-5 s

Phosphorescence: emission involving spin change $(T \rightarrow S)$,

improbable, long-lived >10-5 s


Dissociation: excitation to vibrational state with enough

energy to break bond

Predissociation: relaxation to state with enough energy to

break bond

Energy Level Diagram: (Fig. 15-1)

How likely is fluorescence?

Fluorescence Quantum Yield - ratio of number of molecules fluorescing to number excited

$$\Phi_{fluor} = \frac{\text{\# photons fluor}}{\text{\# species excited}} \qquad (\Phi_{fluor} = 0.0 \text{ to } 1.0)$$

$$= \frac{k_{fluor}}{k_{fluor} + k_{int con} + k_{ext con} + k_{ISC} + k_{pre dis} + k_{dis}}$$

What Factors Affect Φ_{fluor} ?

(1) Excitation λ

Short λ 's break bonds increase $k_{pre-dis}$ and k_{dis} rarely observed

$$\sigma^* \rightarrow \sigma \quad \pi^* \rightarrow n \quad \pi^* \rightarrow \pi$$

most common

emission usually from lowest lying excited state

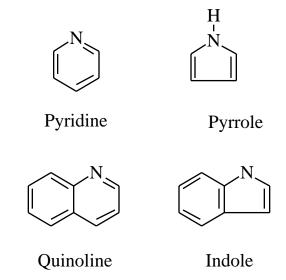
(2) Lifetime of state

Transition probability measured by ε

Large ε implies short lifetime

Largest fluorescence from short lifetime/high ε state

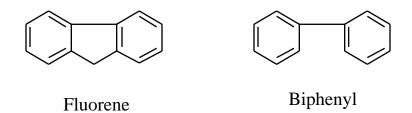
$$\pi^* \rightarrow \pi > \pi^* \rightarrow n (10^{-9} - 10^{-7} s > 10^{-7} - 10^{-5} s)$$


(3) Structure

Few conjugated aliphatics fluoresce

Many aromatics fluoresce

Desire short lifetime S₁, no/slowly accessible T₁


Fluorescence increased by # fused rings and substitution on/in ring

(4) Rigidity

Rigid structures fluoresce

Increase in fluorescence with chelation

(5) Temperature, pH, solvent (p 363-364)

Quantitative Luminescence Spectrophotometry:

Only works at low A (<0.05)

- (i) self quenching (collisions between excited states
- (ii) self absorption (when absorption and fluorescence band overlap)

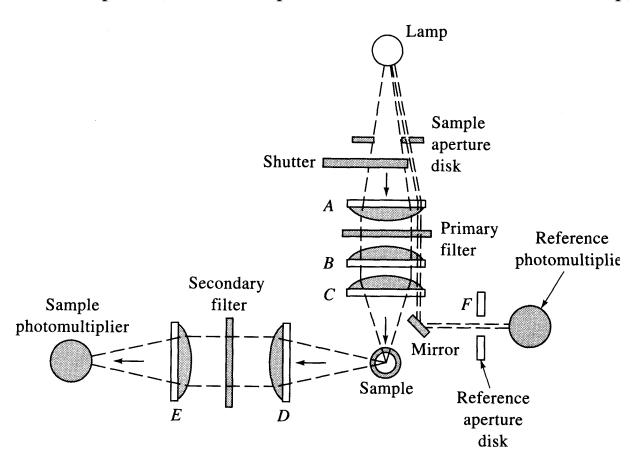


Fig. 15-6

Fluorometer - filters to isolate excitation and fluorescence wavelengths (but no scanning)

Spectrofluorometer - two monochromators for excitation scanning or fluorescence scanning

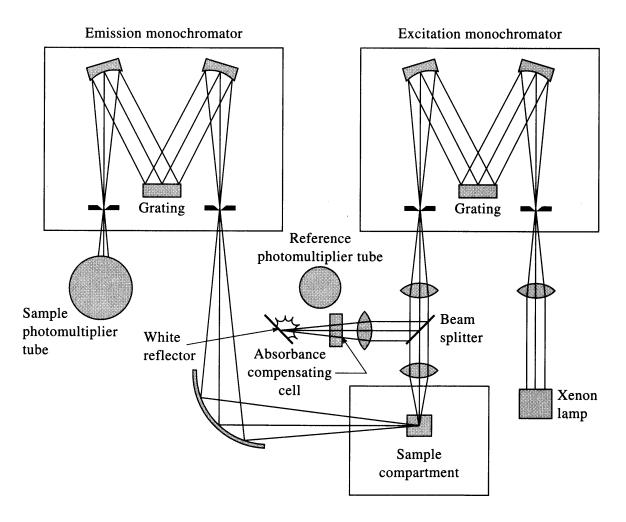


Fig 15-7

Total Luminescence Measurements:

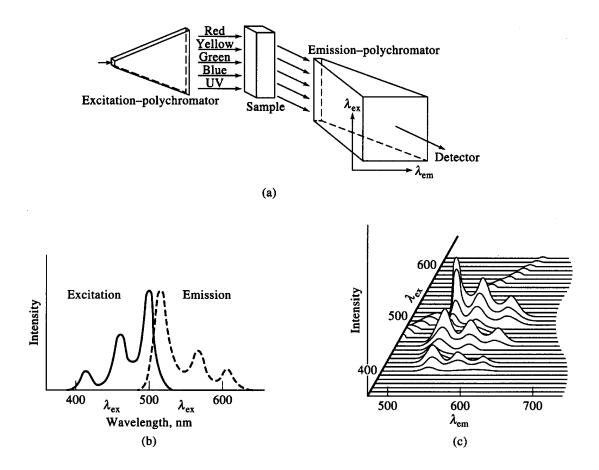


Fig 15-8

Chemiluminescence: (see www article)

Reaction produces molecule in electronically excited state

$$A + B \rightarrow C^* + D$$
$$C^* \rightarrow C + hv$$

Example:

$$NO + O_3 \rightarrow NO_2^* + O_2$$

 $NO_2^* \rightarrow NO_2 + hv (600 - 2800 \text{ nm})$

Used to detect NO from 1 ppb to 10 ppt

Intensity depends on rate of reaction of production of C*

$$I_{CL} = \phi_{CL} \frac{d[C^*]}{dt}$$

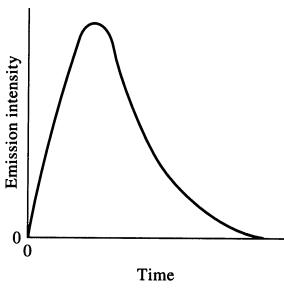


Fig. 15-11

Advantages: (i) simple instrumentation (no excitation hv) (ii) high sensitivity (ppm to <ppb)

Disadvantages: (i) few reactions