
CEM 333 Instrumental Analysis

Simon J. Garrett

Room: CEM 234

Phone: 355 9715 ext 208

E-mail: garrett@cem.msu.edu

Lectures: Tuesday, Thursday 9:00-9:50 am Room 136

Office Hours: Tuesdays 10:00-11:00 am

Course Objectives

Teach fundamentals of instrumental analysis

<u>Lecture:</u> Discuss theory and background for

- (1) chemical/physical property measured
- (2) origin of chemical/physical property
- (3) instrument design and nature of response
- (4) signal processing and relationship between readout to property measured

<u>Laboratory:</u> Provides hands-on experience in

- (1) relating lecture material to practical analysis
- (2) design and operation of a real instrument
- (3) measurements on range of instruments
- (4) example analyses to illustrate value of technique

Introduction (Chapter 1)

Classification of Analytical Methods

Qualitative instrumental analysis is that measured property indicates *presence* of analyte in matrix

Quantitative instrumental analysis is that magnitude of measured property is proportional to *concentration* of analyte in matrix

Species of interest

All constituents including analyte.
Matrix-analyte = concomitants

Often need pretreatment - chemical extraction, distillation, separation, precipitation

(A) Classical:

Qualitative - identification by color, indicators, boiling points, odors

Quantitative - mass or volume (e.g. gravimetric, volumetric)

(B) Instrumental:

Qualitative - chromatography, electrophoresis and identification by measuring physical property (e.g. spectroscopy, electrode potential)

Quantitative - measuring property and determining relationship to concentration (e.g. spectrophotometry, mass spectrometry)

Often, same instrumental method used for qualitative and quantitative analysis

Types of Instrumental Methods:

Property Example Method

Radiation emission Emission spectroscopy - <u>fluorescence</u>,

phosphorescence, luminescence

Radiation absorption Absorption spectroscopy -

spectrophotometry, photometry, nuclear

magnetic resonance, electron spin

resonance

Radiation scattering Turbidity, Raman

Radiation refraction Refractometry, interferometry

Radiation diffraction X-ray, electron

Radiation rotation Polarimetry, circular dichroism

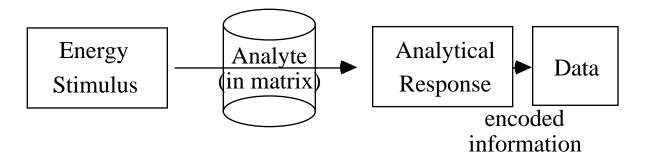
Electrical potential Potentiometry

Electrical charge Coulometry

Electrical current Voltammetry - amperometry, polarography

Electrical resistance Conductometry

Mass Gravimetry


Mass-to-charge ratio Mass spectrometry

Rate of reaction Stopped flow, <u>flow injection analysis</u>

Thermal gravimetry, calorimetry

Radioactivity Activation, isotope dilution

(Often combined with <u>chromatographic</u> or <u>electrophoretic</u> methods)

Example:

Spectrophotometry

Instrument: spectrophotometer

Stimulus: monochromatic light energy Analytical response: light absorption

Transducer: photocell Data: electrical current

Data processor: current meter

Readout: meter scale

<u>Data Domains:</u> way of encoding analytical response in electrical or non-electrical signals.

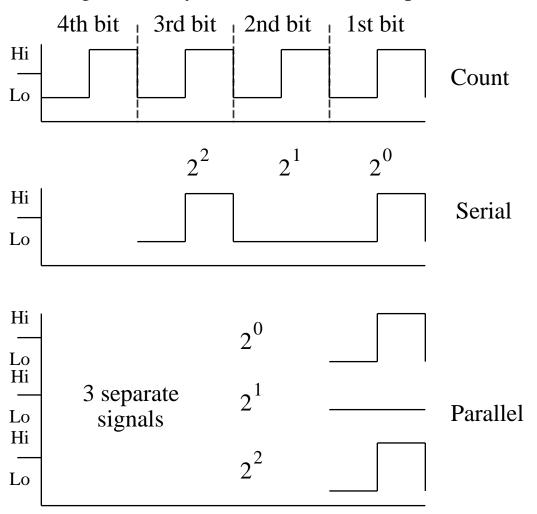
Interdomain conversions transform information from one domain to another.

Detector (general): device that indicates change in environment

Transducer (specific): device that converts non-electrical to electrical data

Sensor (specific): device that converts chemical to electrical data

Non-Electrical Domains	Electrical Domains
Physical (light intensity, color)	Current
Chemical (pH)	Voltage
Scale Position (length)	Charge
Number (objects)	Frequency
	Pulse width
	Phase
	Count
	Serial
	Parallel


<u>Time</u> - vary with time (frequency, phase, pulse width)

Analog - continuously variable magnitude (current, voltage, charge)

<u>Digital</u> - discrete values (count, serial, parallel, number*)

Digital Binary Data

Advantages (1) easy to store (2) not susceptible to noise

Performance Characteristics: Figures of Merit

How to choose an analytical method? How good is measurement?

How reproducible? - Precision

How close to true value? - Accuracy/Bias

How small a difference can be measured? - Sensitivity

What range of amounts? - Dynamic Range

How much interference? - Selectivity

Precision - Indeterminate or random errors

Absolute standard deviation:
$$s = \sqrt{\frac{\sum_{i=0}^{i=N} (x_i - \overline{x})^2}{N-1}}$$

Variance: s²

Relative standard deviation: RSD =
$$\frac{s}{\overline{x}}$$

Standard deviation of mean:
$$s_m = \frac{s}{\sqrt{N}}$$

Accuracy - Determinate errors (operator, method, instrumental)

Bias: bias = $\overline{x} - x_{true}$

Sensitivity

Calibration sensitivity:
$$S = \frac{dSignal}{dc} c + Signal_{blank}$$
$$= mc + Signal_{blank}$$

(larger slope of calibration curve m, more sensitive measurement)

Detection Limit

Signal must be bigger than random noise of blank

Minimum signal: Signal $_{min}$ = Av. Signal $_{blank}$ + ks $_{blank}$

From statistics k=3 or more (at 95% confidence level)

Dynamic Range

At detection limit we can say confidently analyte is present but cannot perform reliable quantitation

Level of quantitation (LOQ): k=10

Limit of linearity (LOL): when signal is no longer proportional to concentration

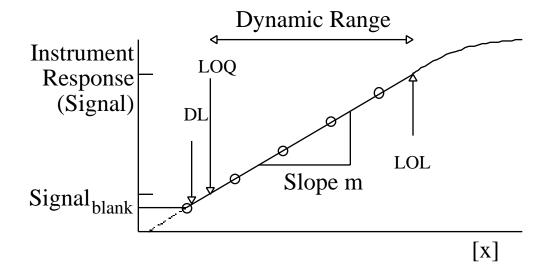
Dynamic range:
$$\frac{LOL}{LOQ}$$
 10^2 to > 10^6

Selectivity:

No analytical method is completely free from interference by concomitants. Best method is more *sensitive* to analyte than interfering species (interferent).

Matrix with species A&B: Signal = $m_A c_A + m_B c_B + Signal_{blank}$

Selectivity coefficient:
$$k_{B,A} = \frac{m_B}{m_A}$$


k's vary between 0 (no selectivity) and large number (very selective).

Calibration methods

Basis of *quantitative* analysis is magnitude of measured property is proportional to *concentration* of analyte

Signal
$$\infty$$
 [x] or Signal = m[x] + Signal blank
$$[x] = \frac{\text{Signal - Signal blank}}{m}$$

Calibration curves (working or analytical curves)

Example (if time):

Analyte Concentration (ppm*)	Absorbance
0.0 (blank)	0.05
0.9	0.15
2.0	0.24
3.1	0.33
4.1	0.42

*ppm=1 µg per L

Define Variance and Covariance:

$$\begin{split} S_{xx} &= \frac{\sum (x_i - \overline{x})^2}{N-1} \quad S_{xy} = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{N-1} \\ \overline{x} &= 2.02 \quad \overline{y} = 0.238 \\ S_{xx} &= \frac{\left(2.02^2 + 1.12^2 + 0.02^2 + 1.08^2 + 2.08^2\right)}{4} = \frac{10.828}{4} = 2.707 \\ S_{xy} &= \frac{(-2.02 \times -0.188) + (-1.12 \times -0.088) + (-0.02 \times 0.002) + ...}{4} \\ &= \frac{0.9562}{4} = 0.23905 \\ Slope: \quad m &= \frac{S_{xy}}{Sx} = \frac{0.23905}{2.707} = 0.0883 \\ b &= \overline{y} - m\overline{x} \\ Intercept: \quad &= 0.238 - (0.0883 \times 2.02) \\ &= 0.0596 \end{split}$$

Calibration expression is

Absorbance=0.0883[Analyte (ppm)]+0.0596