Chem 310

2nd Homework Set

Due Date: Feb. 3, 2004

Note: for the discussion questions, write your answer in your own words; do not copy the Required Notes or the text. This is an opportunity for you to get the concepts organized in your mind.

- 1. What is the near IR range in expressed in wavenumbers? What optical materials are suitable for use in this spectral domain?
- 2. 25000 cm⁻¹ lies in what spectral domain? What wavelength in nm corresponds to 25000 cm⁻¹?
- 3. Calculate the transmittance (%T) of an empty quartz cell. The index of refraction of quartz is 1.55. Note that there are 4 air-quartz interfaces in the beam path.
- 4. Here is a practical application of Snell s Law. When I fish for trout, I don t want the trout to see me as I approach it. This is especially difficult in calm clear water. If I stay at a low enough angle with respect to the trout, then Snell s Law proves that the trout won t be able to see me. Draw a trout suspended a foot below the surface of the water. Draw a line representing a beam of light traveling from the trouts eye to the air-water interface. The angle of incidence of the beam on the water side of the air-water interface is angle θ . Calculate the angle of the beam φ on the air side of the interface. At what angle θ will the angle φ become 90 degrees (parallel to the air-water interface)? Assume that the index of refraction of water is 1.34.
- 5. What is chromatic aberration, and why is a mirror superior to a lens with respect to this aberration? Given that mirrors are superior, why aren t mirrors used as the main optical elements in cameras?
- 6. (a) A camera lens has a f.l. of 35 mm and a f# of 1.8. What is the diameter of the lens?
 - (b) If the f# of the lens is changed from 1.8 to 2.8, does it gather more light or less light?
- 7. What light sources are suitable as continuum sources of UV and VIS light? What light sources are suitable as continuum sources for near IR and IR light?

- 8. Briefly explain how the photoelectric effect yields a signal in a vacuum phototube. Include in your explanation why a vacuum phototube or photomultiplier is blind to IR light.
- 9. Sketch a diagram of a PMT and briefly explain how it works.
- 10. Sketch the transmission curve (T vs λ) for a low pass optical filter with a cutoff wavelength of 450 nm. What color would the filter be?
- 11. An interference filter is constructed with a MgF₂ dielectric (index of refraction = 1.36). What are the first, second and third order wavelengths transmitted by the filter if the dielectric layer is 500 nm thick?
- 12. Sketch the Czerny-Turner monochromator with a planar grating. How is the wavelength scanned? How is stray light reduced?
- 13. Harris, Exercise 20-A.
- 14. Harris, Problem 20-8.
- 15. Calculate the linear dispersion of a monochromator for the second-order wavelength if the grating has 800 lines/mm and the focal length of the monochromator is 100 mm. What is the bandpass if the slitwidths are set to 0.25 mm?
- 16. What is the difference between an echelle grating and an echellete grating? Show a sketch of each type of grating and indicate the surface that diffracts the light.
- 17. Generally, a single grating can be used for a monochromator that operates in the UV/VIS domain. However, a monochromator operating in the IR domain usually has 2 gratings, and switches them at about 2000 cm⁻¹. Why?
- 18. Why are cutoff filters often used in combination with grating monochromators?
- 19. If stray light is coming out of a monochromator, passing through a sample, and reaching the detector, will the measured transmittance be higher or lower than the true transmittance? Hint: see p. 471 of Harris.