Chapter 6

Introduction to Spectroscopy

Spectroscopy – Originally, the study of the dispersion of visible light into its component colors (visible spectrum).  Now it means the study of electromagnetic (EM) and other spectra including mass, electron and acoustic spectroscopy’s.

•
This chapter describes the properties of electromagnetic (EM) radiation and its interaction with matter.

General properties of EM radiation

•
Light (EM radiation) has a dual nature.  

•
Light exhibits properties of:

I.
waves

II.
particles (quanta or photons)

II.
Wave Properties of Electromagnetic (EM) Radiation

•
At 90° to the direction of propagation is an oscillation in the electric field.

•
At 90° to the direction of propagation and 90° from the electric field oscillation (orthagonal) is the magnetic field oscillation.
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•
Vectors can be used to represent the magnitude of the field strength at any position.

•
The electric field is responsible for most important optical properties.

A.
Wave Parameters
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Period (p) – 
the time required for one cycle to pass a fixed point in space.

Frequency () –
the number of cycles which pass a fixed point in space per second. ( s-1 = Hz )
 = 1/p
•
depends on the source, but is independent of the propagating (transmitting) material.
Amplitude (A) –
The maximum length of the electric vector in the wave (Maximum height of a wave).

Wavelength () –
The distance between two identical adjacent points in a wave (usually maxima or minima).
Velocity of propagation (vi) – The rate at which a wave front moves through a propagating medium in meters per second (m s-1).

vi = i

•
In vacuum vi = i = 2.99792 x 108 m s-1  ( 3.00 x 108 m s-1 ) = c
•
In air vi is essentially = c
•
vi smaller in other media because of interactions of the EM field with the electrons in atoms and molecules of the medium.

•
Since  is constant, when vi decreases,  must decrease.

•
i decreases when an EM field moves through a medium other that air. 
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Wavenumber (
[image: image4.wmf]n

) – 
The number of waves per cm in units of cm-1.
•
When  in vacuo is expressed in cm,  
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 = 1/
•
Or 
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 = k, where k is dependent on the medium and is equal to the reciprocal of velocity in the medium.
•
Commonly used for infrared spectroscopy (IR) because it is directly proportional to frequency, and therefore the energy of the radiation.

Power (P) – The amount of energy reaching a given area per second.

Intensity (I) – The power per unit solid angle.

•
Both power and intensity are related to the square of the amplitude (A2) of an EM wave.

B.
The Electromagnetic Spectrum

•
The electromagnetic spectrum covers a wide range of frequencies and wavelengths.
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Figure 6-3 Regions of the electromagnetic spectrum.




•
The divisions are based on the methods used to produce and observe the various types of radiation.

•
For example, the wavelength range for gamma rays and x-rays overlap.  If the source is man-made, the radiation is usually considered x-rays.  If the radiation is naturally occurring, the radiation is usually considered gamma rays.

•
Types spectroscopic methods based on EM radiation.
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C.
Mathematical Description of EM Waves

•  Electromagnetic waves are sine waves.

y = A sin (2t + )

y = electrical or magnetic field strength

A = amplitude

 = frequency

t = time

 = phase angle (0° - 360° or 0 - 2 radians)

•
Sine waves are additive, both from a mathematical point of view and in a physical sense.

•
Mathematical point of view:

y = A sin (21t + 1) + A sin (22t + 2) + A sin (23t + 3) + ……

•
Phase angle
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These two waves have a  = 90° or /2

D.   Superposition of Waves.

•
Principle of superposition – when two or more waves travel in the same space their displacements are additive.

•
Two EM waves of the same frequency () but differ in  and A.
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•
Constructive Interference - occurs when a wave crest meets a wave crest or a trough meets a trough. [ (2 – 1) is 0° or 360°]

•
Destructive Interference - occurs when a wave crest meets a trough. 



[ (2 – 1) is 180°]

•
Two EM waves that differ in frequency ().
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•
The beat period (P) is dependent upon the difference in wavelengths ().

•
Jean Fourier (1768 –1830, French mathematician) showed that any wave motion can be described as the summation of sine or cosine waves.

Example:  The square wave commonly encountered in electronics.
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•
The decomposition of complex waveforms can be performed computationally by Fourier Transform to obtain the equations for each wave composing the complex wave. Therefore, the frequency of each component of the complex wave can be determined.
E.    Diffraction of Radiation.

•   Diffraction -
a wave property in which when a wave passes through a narrow opening, the wave is bent.
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• 
Thomas Young unambiguously demonstrated the wave property of light in 1880 by the use of diffraction.
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Where:

n = order of interference
 = frequency
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 = distance between slits
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 = distance between light bands
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 = distance between slits and screen

F.
Coherence of Radiation

•   Two light beams are said to be coherent if

1.
they have the same wavelength (or wavelength range).

2.
the phases of the waves are exactly the same. 

G.
Transmission of Radiation

•  When light waves enter a liquid or solid propagating material they slow down.

•
This is because the oscillating electric field interacts with the electrons of the medium. The wave is thus slowed.

•
Index of refraction (i) – of a medium is the measure of the degree of interaction between a substance and radiation transmitted through that substance.

i = c/vi

​
c = speed of light

vi = velocity of light in the medium

i = refractive index (eta)

i depends on the substance.

i varies with wavelength – called dispersion

H.  Refraction of Electromagnetic Radiation

•
When electromagnetic radiation passes at an angle from one medium to another of differing refractive index (i) the beam changes direction due to a change in velocity.
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•
The amount of refraction is determined by Snell’s Law:
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•
This is the principle upon which optical lenses, prisms, etc. work.

•
If  is in vacuum it is 1.0


Then:
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•
Also works well when  is air because vac = 1.00027air.
Example:  Radiation at a wavelength of 460 nm passing through air strikes a glass medium at an angle of 65°.  The radiation is refracted to an angle of 35° in the glass. What is the refractive index of the glass?
What is the velocity and wavelength of the radiation in the glass?

I.   Reflection of Radiation

•
Occurs when electromagnetic radiation crosses at 90° an interface between two media with different refractive indicies some of the light is reflected.
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Ir = Intensity of reflected beam


I0 = Intensity of incident beam

III.
Quantum-Mechanical Properties of EM Radiation

•
Some properties of EM radiation (light) can only be explained by treating radiation as particles rather that waves.

•
These particles (or packets) of radiation are called photons or quanta, hence the term quantum mechanics.

A.
The Photoelectric Effect

•
First observed by Heinz Hertz in 1887.

•
Exposure of certain elements (especially metals) to radiation of a certain wavelength will result in the emission of electrons from the element.

•
For electrons to be emitted the radiation must be of a minimum frequency (energy) known as the threshold frequency.

-
Below the threshold frequency, no electrons will be emitted from the element regardless of the illumination power of the radiation.

-
Above the threshold frequency, the number of electrons emitted (current) will increase as the illumination power of the radiation increases.

Millikan’s Vacuum Phototube Experiment

•
Landmark experiment that confirmed Einstein’s quantum theory.
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Observations:

1.
Electrons are emitted from the cathode only when it is exposed to radiation above the threshold frequency, which depends on the chemical coating the cathode.

2.
If a negative voltage is applied, at a certain voltage the photocurrent (flow of electrons) will stop at a certain voltage (stopping voltage)

3. 
The stopping voltage is proportional to the frequency () of the radiation.

4.
The current (# of electrons) is proportional to the intensity of the radiation.

5.
The stopping voltage is independent of the intensity of the radiation.

Implications of Millikan’s Vacuum Phototube Experiment
•
The radiation is striking the cathode as particles (photons) whose energy depends on the frequency of the radiation.

•
Each photon causes the release of an electron whose energy is less than or equal to the energy of the photon.

•
Increasing the intensity of the radiation only increases the number of photons striking the surface of the cathode, not the energy of the photons. Therefore the photocurrent increases, but the energy of the most energetic electrons emitted is dependent only on the frequency of the radiation.

•
The kinetic energy (eV0) of the most energetic electron is equal to the stopping voltage (V0) times the charge of an electron (e = - 1.60 x 10-9 coulombs).
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•
The plots are described by the equation:
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where:
h = Planck’s constant (6.6254 x 10-34 Js)


 = frequency (in Hz)


= work function (dependent on substance)

•
Einstein had earlier proposed a relationship between energy and frequency of light.
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•
Combining Einstein’s and Millikan’s equations gives:
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•
Recasting Einstein’s equation in terms of wavelength of radiation.
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So the energy of a photon is directly proportional to its frequency and inversely proportional to its wavelength.

B.
Energy States of Chemical Species

•
Atoms, ions, and molecules exist in discrete states with definite amounts of energy. To change states a species must absorb or emit energy exactly equal to the energy difference between the states.

•
Atoms, ions, and molecules absorb or emit radiation when making a  transition from one state to another state. The energy difference between the states is related to the frequency () or the wavelength () of the radiation.


[image: image32.wmf]l

n

hc

h

E

E

E

=

=

-

=

0

1

D


C.
Emission of Radiation

•
Emission -
relaxation of an excited particle (atom, ion, molecule) to a lower energy state (or level) by releasing the excess energy in the form of photons.

•
Sources of excitation –

1.
bombardment with electrons or elementary particles

2.
exposure to an electrical current or heat

3.
irradiation with a beam of EM radiation

•
Atomic Emission -
results in a line spectrum due to the transition of electron between atomic orbitals.

•
Molecular Emission -
results in a band spectrum due to the combination of the transition of electrons between atomic orbitals, molecular orbital, and vibrational states of the molecule.

Atomic and Molecular Emission
Line and Band Spectra

[image: image47.jpg]ﬁ
e = 3
= 3 2N
“ 3 SIRES
! S SH|w
% 5 M IE
) M
2 4\_1 =
I\
S
Bands «
U o
A \ E{
5 sl 2
3 MgOH bands Zigin < -
2 < o 2 a
~ N AT T O oY v L“’
o S — Yoo BH O Z
= 0 0 O[c- 000 00 %0 = < 30
P ¢ o N onannennoen o
= z =
) P o o
~ 2 == (]
« oohn 3 Sl v
o ol wlo o
o <t - on | o)
<+ < %E =
= s < g |3
gl o Al ‘o>
& o <t|n o<t
< <+ S SZ
o~ < << )
2 z ZZ%| /
o <
:: <
o 4
)
~ = My JLAer
5 ===
[3a) 4 5
T _——T Continuum
O -
y_/\/v
I I [ L1l I | R
325 350 375 400 450 500 550 600

Wavelength, nm
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D.
Absorption of Radiation

•
Absorption -
The process in which electromagnetic radiation is transferred to the atoms, ions, or molecules in the sample causing the promotion of these particles from the ground state to an excited state.
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•
The atoms, ions, and molecules have only a limited number of discrete energy levels, so for absorption to occur the energy of the exciting photon must exactly match the energy difference between the ground state and the excited state.

1.
Atomic absorption -
Results in the absorption of few, well-defined frequencies of radiation due to a small number of possible energy states.

•
Different energy states arise from the promotion of electrons from ground state atomic orbitals to higher energy orbitals.

UV-vis Spectrum of Na
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-
The two peaks arise from the promotion of a 3s electron to the two 3p states

2.
Molecular absorption -
Absorption spectra are much more complex than for atomic absorption due to a large number of possible energy states.
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•
The energy of a band in a molecular absorption spectrum is the sum of three different energy components.

E = Eelectronic + Evibrational + Erotational

•
The sharpness of molecular absorption spectra also depends on the state of the sample. In condensed states the spectra broaden due to molecular collisions.
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•
Processes in which atoms and molecules that are excited by absorption of radiation return to the ground state.

•
Spectroscopies based on relaxation processes differ from emission spectroscopies because the excitation process is due to the absorption of EM radiation rather than heating or electrical current. 

1.
Nonradiative Relaxation -
Relaxation to a lower energy state that does not result in the release of a photon.
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•
The energy released by the relaxation is often converted to kinetic energy due to intermolecular collisions.

•
Nonradiative relaxation results in a slight increase in the sample temperature due to the increased kinetic energy.

2.
Fluorescence Relaxation

•
Atoms or molecules excited by absorption relax to the ground state accompanied by the emission of a photon.

Instrumentation
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Detector is at a 90° angle to the source so the beam will not be “seen” by the detector.

•
Fluorescence relaxation usually occurs from an excited electronic energy state to the ground state.

1.
Resonance Fluorescence – The emitted photon has the same frequency / wavelength as the excitation radiation.

2.
Nonresonance Fluorescence – The emitted photon has a lower frequency / longer wavelength than the excitation radiation.

•
Due to nonradiative relaxation from a vibrational state to the nearest electronic state, followed by fluorescent relaxation to the ground state.

•
Also referred to as a Stoke’s Shift

III.
Quantitative Aspects of Spectrochemical Measurements
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•
All of the above spectrochemical require measurement of the radiant power (P).

•
Power (P) – 
the energy of a beam of radiation that impinges on a given area per second.

•
Detectors in these instruments usually convert the radiant power into an electrical signal (S). [Commonly a voltage or a current]
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k is a proportionality constant

•
Most detectors have a Dark current (kd) which is a signal reported by the detector when there is no radiation hitting the detector. So …
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Note: This is a linear relationship of the form y = mx + b

A.
Emission, Luminescent, and Scattering Methods

•
The power of emission from a sample is directly proportional to the number of photons emitted from the sample. The number of photons emitted is directly proportional to the number of sample atoms, ions, or molecules (concentration). So for all of these methods power is directly proportional to concentration of analyte. (i.e.  Pe = kc)
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k’ is a proportionality constant determined by measuring the signal from analytes of known concentration (standards).

B.
Absorption Methods

•
These methods require two measurements:

P0 – the power of the radiation beam before it passes through the sample

P – the power of the radiation beam after it passes through the sample medium containing the analyte.

•
There are two terms commonly used with absorption methods to describe the relationship of P0 and P.

1.
Transmittance

2.
Absorbance

1.
Transmittance -
The fraction of incident radiation transmitted by the sample medium.
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Figure 6-21 Attenuation of a beam of radiation by an
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Commonly expressed as a percentage:
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•
Major limitation – transmittance has a nonlinear relationship with concentration of analyte in the sample.

2.
Absorbance -
A measurement of the amount of radiant power absorbed by the sample defined as the negative log of transmittance.
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•
Absorbance has a linear relationship with sample concentration defined by Beer’s Law.
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Figure 6-21 Attenuation of a beam of radiation by an
absorbing solution.




A = bc

Where:
A =
absorbance, e = molar absorptivity, b = sample path length, and c = concentration
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