Chapter 16 - Aldehydes & Ketones Chem 306 Roper

I. Overview

II. Nomenclature

A. Aldehydes

Structure	Common Name	IUPAC Name
ОН	Formaldehyde	Methanal
H ₃ C H	Acetaldehyde	Ethanal
O H	Benzaldehyde	Benzaldehyde

Write the structure for propanal and 3-aminopentanal.

B. Ketones

Structure	Common Name	IUPAC Name
H ₃ C CH ₃	Acetone	Propanone
C	Methyl ethyl ketone (MEK)	Butanone
o C C	Ethyl propyl ketone	3 - Hexanone
	Cyclohexanone	Cyclohexanone

Write the structure for methyl phenyl ketone and 2-methyl - 3 - pentanone.

III. Properties

A. Aldehydes and ketones are called "carbonyl compounds" because they contain a carbonyl group.

B. Physical Properties of Aldehydes and Ketones

Can you explain the trends below? Aldehydes and ketones are soluble in water up to how many carbons?

Structure	Name	Boiling Point (°C)	Water Solubility (g/100 mL H ₂ O)
НСНО	Formaldehyde	-21	55
CH ₃ CHO	Acetaldehyde	21	Soluble
CH ₃ CH ₂ CHO	Propanal	49	16
CH ₃ CH ₂ CH ₂ CHO	Butanal	76	7
CH3CH2CH2CH2CHO	Pentanal	103	1
_СНО	Benzaldehyde	178	0.3
CH ₃ COCH ₃	Acetone	56	Soluble
CH ₃ CH ₂ COCH ₃	2-Butanone	80	26
CH ₃ CH ₂ CH ₂ COCH ₃	2-Pentanone	102	6
0	Cyclohexanone	156	2

Rank the following compounds (all have a similar molecular weight) in order of increasing boiling temperature: pentane, 1 – butanol, butanal.

Explain why all aldehydes and ketones are soluble in organic solvents such as hexane or benzene.

C. Smaller ketones (2-6) carbons are good solvents because they can dissolve polar and non-polar solutes.

D. Many ketones and aldehydes are fragrant.

menthone

diacetyl (2-butanedione)

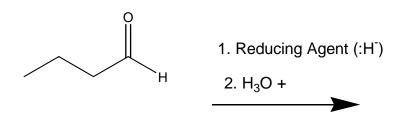
benzaldehyde

IV. Reactions of Aldehydes & Ketones – Oxidation and Reduction

A. Oxidation

1. **Aldehydes** are oxidized to carboxylic acids by a variety of oxidizing agents [O]

Predict the products of the oxidation of the following aldehydes
Acetaldehyde
Benzaldehyde
2. Ketones resist oxidation by most oxidizing agents.
 Oxidation is used as a chemical test to distinguish between an aldehyde and a ketone.


B.	Reduction		
	1.	Reduction of carbonyl groups involves the addition of hydrogen.	
		nydrogon.	
	2.	Some examples	
Aldehyde			

Ketone

3. Complete the equations for these reductions

a.

b.

4. In general the reduction of an aldehyde produces

_____ and the reduction of a ketone produces

5. NAD+ and NADH are natures oxidizing and reducing agents.

Muscle Chemistry – pyruvate/pyruvic acid is the end product of glycolysis

Pyruvic Acid

V. Reactions of Aldehydes & Ketones – Hemiacetal and Acetal Formation

- A. Addition of Alchohols
 - 1. The addition of an alcohol (ROH) to the carbonyl group of an aldehyde or ketone forms a hemi-acetal. If another alcohol is added to the same carbon, an acetal forms.

What could be added to the system above to shift the equilibrium to the left? To the right?

- 2. Some examples...
 - a. acetaldehyde + methanol

b. acetone + methanol

c. benzaldehyde + ethanol

3. Try these.

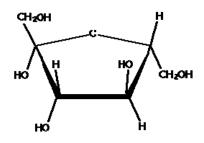
Which of the following is an acetal? Hemiacetal? Are they formed from aldehydes or ketones?

a.

b.

c.

d.


е

f.

B. Sugar Chemistry – An application of hemiacetal formation.

Which carbon in the following sugars is a hemiacetal carbon?

D – galactose

D - fructose