Measurements are not exact

Chapter 2

Measurements In Chemistry

Measurements can never be exact; there is always some uncertainty.

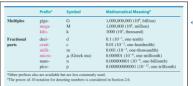
© Richard Hamilton Smith/Corbis Outline

Chemistry 120 Online LA Tech

Chapter 2-1

Chemistry 120 Online LA Tech

Chapter 2-2


Metric System

Metric system units are becoming increasingly evident on highway signs.

Chemistry 120 Online LA Tech

Metric Prefixes

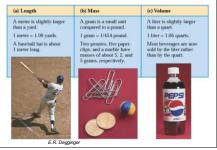

Chemistry 120 Online LA Tech

Table 2.1

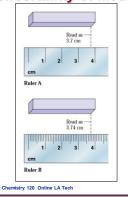
Metric System Base Units

Fig. 2.2
Comparisons of the base metric system units of length, mass, and volume with common objects.

Chemistry 120 Online LA Tech

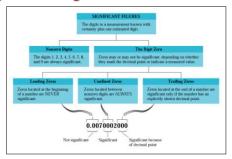
Chapter 2-5

Volume Unites (cm³, L and mL)


Solution Concentration Units

The use of the concentration unit milligrams per deciliteris common in clinical laboratory reports dealing with the composition of human body fluids.

Chemistry 120 Online LA Tech



Uncertainty of Measurements

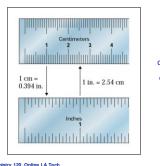
The scale on a measuring device determines the magnitude of the uncertainty for the recorded measurement.

Significant Figures in Measurements

Chemistry 120 Online LA Tech

Chapter 2-9

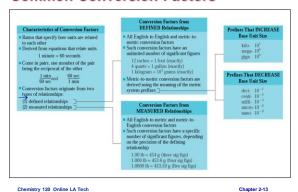
Rounding off from Calculator Answer


The digital readout on an electronic calculator usually shows more digits than are needed.

Chemistry 120 Online LA Tech

Chapter 2-10

Unit Conversions


It is experimentally determined that 1 inch equals 2.54 cm, or 1 cm equals 0.394 inch

Chemistry 120 Online LA Tech

Unit Conversion Factors

	Metric to English	English to Metric	
Length		2	
1.00 inch = 2.54 centimeters	1.00 in.	2.54 cm	
	2.54 cm	1.00 in.	
1.00 meter = 39.4 inches	39.4 in.	1.00 m	
	1.00 m	39.4 in.	
1.00 kilometer = 0.621 mile	0.621 mi	1.00 km	
	1.00 km	0.621 mi	
Mass			← Table
1.00 pound = 454 grams	1.00 lb	454 g	
	454 g	1.00 lb	
1.00 kilogram = 2.20 pounds	2.20 lb	1.00 kg	
	1.00 kg	2.20 lb	
1.00 ounce = 28.3 grams	1.00 oz	28.3 g	
	28.3 g	1.00 oz	
Volume			
1.00 quart = 0.946 liter	1.00 qt	0.946 L	
	0.946 L	1.00 qt	
1.00 liter = 0.265 gallon	0.265 gal	1.00 L	
	1.00 L	0.265 gal	
1 00 milliliter = 0 034 fluid ounce	0.034 fl oz	1.00 mL	
1.00 infilmer = 0.034 fluid ounce	1.00 mL	0.034 fl oz	

Common Conversion Factors

Densities and Masses

Both of these items have a mass of 23 grams, but they have very different volumes; therefore, their densities are different as well.

Chemistry 120 Online LA Tech

Chapter 2-14

Properties of Gases, Liquids and Solids

Solids (25°C) 19.3 g/cm³ 11.3 g/cm³ 8.93 g/cm³ 2.70 g/cm³ gold lead table salt 2.16 g/cm³ 1.7-2.0 g/cm³ 1.59 g/cm³ 0.30-0.50 g/cm³ bone table sugar wood (pine) Liquids (25°C) 13.55 g/mL 1.028-1.035 g/mL 1.027 g/mL 1.003-1.030 g/mL 0.997 g/mL 0.92 g/mL 0.79 g/mL 0.56 g/mL → Table 2.3 mercury olive oil milk blood plasma urine ethyl alcohol gasoline Gases (25°C and 1 atmosphere pres 3.17 g/L 1.96 g/L 1.42 g/L 1.25 g/L 0.66 g/L 0.08 g/L nitrogen chlorine carbon dioxide hydrogen

Chemistry 120 Online LA Tech Chapter 2-15

Why the Coin floats on Mercury?

Fig. 2.9
 The penny is less dense than the mercury it floats on.

Chemistry 120 Online LA Tech

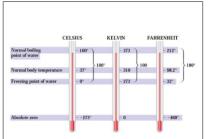
Measurements of Body Density

Chemistry 120 Online LA Tech

Chapter 2-17

Specific Heat of Substances

→ Table 2.4


Substance	Specific Heat (cal/ g·°C) ^a
vater, liquid	1.00
thyl alcohol	0.58
live oil	0.47
vood	0.42
luminum	0.21
lass	0.12
ilver	0.057
old	0.031

Chemistry 120 Online LA Tech

Chapter 2-18

Temperature Scales

Fig 2.10
The relationships among the Celsius, Kelvin, and Fahrenheit temperature scales are determined by the degree sizes and the reference point values.

Chemistry 120 Online LA Tech