Chapter 6. Chemical Calculations: Formula Masses, Moles, and Chemical Equations

Introduction to Inorganic Chemistry

Instructor Dr. Upali Siriwardane (Ph.D. Ohio State)

E-mail: upali@latech.edu

Office: 311 Carson Taylor Hall; Phone: 318-257-4941;

Office Hours: MWF 8:00-9:00 and 11:00-12:00;

TR 10:00-12:00

Contact me trough phone or e-mail if you have questions

Online Tests on Following days

March 24, 2017: Test 1 (Chapters 1-3) April 10, 2017: Test 2 (Chapters 4-5) April 28, 2017: Test 3 (Chapters 6,7 &8) May 12, 2017: Test 4 (Chapters 9, 10 &11) May 15, 2017: Make Up Exam: Chapters 1-11)

Chapter 6

Table of Contents

- 6.1 Formula Masses
- 6.2 The Mole: A Counting Unit for Chemists
- 6.3 The Mass of a Mole
- 6.4 Chemical Formulas and the Mole Concept
- 6.5 The Mole and Chemical Calculations
- 6.6 Writing and Balancing Chemical Equations
- 6.7 Chemical Equations and the Mole Concept
- 6.8 Chemical Calculations Using Chemical **Equations**

Section 6.1

Formula Masses

Atomic Mass of Cu 63.55 amu (g/mol)

Formula Mass of CaCl₂ = 110.98 amu (g/mol)

 $(2 \times 35.45) + 40.08$

Molecular Mass of H₂O = 18.02 amu (g/mol)

 $(2 \times 12.01.45) + (6 \times 1.008)$

Section 6.2

The Mole: A Counting Unit for Chemists

A Mole

- · The amount of a substance that contains as many elementary particles (atoms, molecules, or formula units) as there are atoms in exactly 12 grams of pure 12C.
- 1 mole of anything = 6.02 x 10²³ units of that thing (Avogadro's number).
- 1 mole C = 6.022 x 10²³ C atoms = 12.01 g C

Section 6.3

The Mass of a Mole

Molar Mass (g/mol)

[molecular or formula mass (weight)]

Mass in grams of one mole of the substance:

Molar Mass of N = 14.01 g/mol

Molar Mass of H₂O = 18.02 g/mol (molecular weight)

 $(2 \times 1.008) + 16.00$

Molar Mass of Ba(NO_3)₂ = 261.35 g/mol (Formula Weight)

 $137.33 + (2 \times 14.01) + (6 \times 16.00)$

Section 6.3

The Mass of a Mole

Exercise

Calculate the mass, in grams, of a 2.5-mole sample of ethane, C₂H₆.

Section 6.3 The Mass of a Mole Exercise Calculate the number of moles in 50.0 g of H_2O . Molecular weight of $H_2O = 18.016$ g/mol $50.0 \text{ g.H}_2O \quad \frac{2}{6} \frac{1 \text{ mol } H_2O}{18.016 \text{ g.H}_2O} = 2.78 \text{ mol } H_2O$ $2.78 \text{ mol } H_2O$

Chemical Formulas and the Mole Concept Chemical Formula – Microscopic View The numerical subscripts in a chemical formula give the number of atoms of the various elements present in 1 formula unit of the substance. In one molecule of P₂O₅, two atoms of phosphorus and five atoms of oxygen are present.

Section 6.5

The Mole and Chemical Calculations

Exercise

Consider separate 100.0 gram samples of each of the following:

 Rank them from greatest to least number of oxygen atoms.

$$\begin{split} &H_2O=18.02,\ N_2O=46.01\ ,\ C_3H_6O_2=74.09,\ CO_2=44.01\ g/mol \\ &H_2O=5.549,\ N_2O=2.173\ ,\ C_3H_6O_2=1.349,\quad CO_2=2.272\ mol \\ &O=5.549,\quad O=2.173,\quad C_3H_6O_2=2.698,\ CO_2=4.544\ mol\ O=5.549,\quad O=2.173,\quad C_3H_6O_2=2.698,\quad CO_2=4.544\ mol\ O=5.549,\quad O=2.173,\quad C_3H_6O_2=2.698,\quad CO_2=4.544\ mol\ O=5.549,\quad O=2.173,\quad C_3H_6O_2=2.698,\quad CO_2=4.544\ mol\ O=5.549,\quad CO_2=4.5441\ mol\ O=5.549,\quad CO_2=4.5441\ mol\ O=5.549,\quad CO_2=4.5441\ mol\ O=5.549,\quad CO_2=4.5441\ mol\ O=5.549,\quad CO_2=5.549,\quad CO_2=5.549,\quad$$

Section 6.5

The Mole and Chemical Calculations

Exercise

Consider separate 100.0 gram samples of each of the following:

 Rank them from greatest to least number of oxygen atoms.

Copyright © Cengage Learning, All rights reserved

Section 6.6

Section 6.6

Writing and Balancing Chemical Equations

A Representation of a Chemical Reaction

 A written statement that uses chemical symbols and chemical formulas to describe the changes that occur in a chemical reaction.

$$C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O$$
reactants products

 Reactants are always placed on the left side of the arrow, products are always placed on the right side of the arrow.

Writ

Writing and Balancing Chemical Equations

$$C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O$$

When the equation is balanced.

- All atoms present in the reactants are accounted for in the products.
- 1 mole of ethanol reacts with 3 moles of oxygen to produce 2 moles of carbon dioxide and 3 moles of water.

Copyright @ Cengage Learning. All rights reserved

Section 6.6

Writing and Balancing Chemical Equations

Equation Coefficient

- A number that is placed to the left of a chemical formula in a chemical equation; it changes the amount, but not the identity of the substance.
- The coefficients in the balanced equation have nothing to do with the amount of each reactant that is used/given in the problem.

Section 6.6

Writing and Balancing Chemical Equations

- The balanced equation represents a ratio of reactants and products, not what actually "happens" during a reaction.
- Use the coefficients in the balanced equation to calculate/decide the amount of each reactant that is used, and the amount of each product that is formed.

Copyright © Cengage Learning. All rights reserved

5

Section 6.6

Writing and Balancing Chemical Equations

Guidelines for Balancing Chemical Equations

- 1. Examine the equation and pick one element to balance first.
- 2. Then pick a second element to balance, and so on.
- 3. As a final check, count atoms on each side of the equation.

Commission & Commission All sinkle commission

Section 6.6 Writing and Balancing Chemical Equations loading... https://www.youtube.com/watch?v=oDVswHfZJzY To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play

Section 6.6

Writing and Balancing Chemical Equations

Exercise

Which of the following correctly balances the chemical equation given below?

$$CaO + C \rightarrow CaC_2 + CO_2$$

I.
$$CaO_2 + 3C \rightarrow CaC_2 + CO_2$$

II.
$$2CaO + 5C \rightarrow 2CaC_2 + CO_2$$

III.
$$CaO + (2.5)C \rightarrow CaC_2 + (0.5)CO_2$$

IV.
$$4CaO + 10C \rightarrow 4CaC_2 + 2CO_2$$

Section 6.6

Writing and Balancing Chemical Equations

Exercise

Which of the following correctly balances the chemical equation given below?

$$CaO + C \rightarrow CaC_2 + CO_2$$

I.
$$CaO_2 + 3C \rightarrow CaC_2 + CO_2$$

II.
$$2CaO + 5C \rightarrow 2CaC_2 + CO_2$$

III.
$$CaO + (2.5)C \rightarrow CaC_2 + (0.5)CO_2$$

IV. $4CaO + 10C \rightarrow 4CaC_2 + 2CO_2$

Copyright @ Cengage Learning. All rights reserved

Section 6.6

Writing and Balancing Chemical Equations

Concept Check

Which of the following are true concerning balanced chemical equations? There may be more than one true statement.

- I. The number of molecules is conserved.
- II. The coefficients tell you how much of each substance you have.
- III. Atoms are neither created nor destroyed. The coefficients indicate the mass ratios of the substances used.
- IV. The sum of the coefficients on the reactant side equals the sum of the coefficients on the product side.

Section 6.6

Writing and Balancing Chemical Equations

?

Concept Check

Which of the following are true concerning balanced chemical equations? There may be more than one true statement.

- I. The number of molecules is conserved.
- II. The coefficients tell you how much of each substance you have.

III. Atoms are neither created nor destroyed.

- IV. The coefficients indicate the mass ratios of the substances used.
- V. The sum of the coefficients on the reactant side equals the sum of the coefficients on the product side.

Copyright © Cengage Learning. All rights reserved

Section 6.6

Writing and Balancing Chemical Equations

Notice

- The number of atoms of each type of element must be the same on both sides of a balanced equation.
- · Subscripts must not be changed to balance an equation.
- A balanced equation tells us the ratio of the number of molecules/units which react and are produced in a chemical reaction.
- Coefficients can be fractions, although they are usually given as lowest integer multiples.

covright © Cengage Learning. All rights reserve

Section 6.7

Chemical Equations and the Mole Concept

Coefficients in a Balanced Chemical Equation

$$C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O$$

- One molecule of C₂H₅OH reacts with three molecules of O₂ to produce two molecules of CO₂ and three molecules of H₂O.
- One mole of C₂H₅OH reacts with three moles of O₂ to produce two moles of CO₂ and three moles of H₂O.

Section 6.7

Chemical Equations and the Mole Concept

Can Be Used to Generate mole Conversion Factors

$$C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O$$

 1 mole of C₂H₅OH produces 2 moles of CO₂ and 3 moles of H₂O.

Section 6.7

Chemical Equations and the Mole Concept

Can Be Used to Generate Conversion Factors

$$C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O$$

 1 mole of C₂H₅OH reacts with 3 moles of O₂.

$$\begin{array}{l} \frac{\pi}{2}\frac{1 \ \text{mol}\ C_2H_5OH}{\delta} \frac{\tilde{\sigma}}{3 \ \text{mol}\ O_2} \stackrel{\tilde{\sigma}}{\stackrel{\div}{\sigma}} \text{and} \stackrel{\tilde{\pi}}{\stackrel{\varepsilon}{\leftarrow}} \frac{3 \ \text{mol}\ O_2}{\delta} \stackrel{\tilde{\sigma}}{\stackrel{\div}{\sigma}} \frac{1 \ \text{mol}\ C_2H_5OH}{\delta} \stackrel{\tilde{\sigma}}{\stackrel{\div}{\sigma}} \end{array}$$

Copyright © Cengage Learning. All rights reserved

Section 6.8

Chemical Calculations Using Chemical Equations

Stoichiometric Calculations

 Chemical equations can be used to relate the masses of reacting chemicals. Section 6.8

Chemical Calculations Using Chemical Equations

Calculating Masses of Reactants and Products in Reactions

- 1. Balance the equation for the reaction.
- 2. Convert the known mass of the reactant or product to moles of that substance.
- 3. Use the balanced equation to set up the appropriate mole ratios.
- Use the appropriate mole ratios to calculate the number of moles of desired reactant or product.
- Convert from moles back to grams if required by the problem.

Copyright © Cengage Learning. All rights reserved

7

Chemical Calculations Using Chemical Equations

Exercise (Part I)

Methane (CH₄) reacts with the oxygen in the air to produce carbon dioxide and water.

Ammonia (NH₃) reacts with the oxygen in the air to produce nitrogen monoxide and water.

Write balanced equations for each of these reactions.

Copyright © Cengage Learning. All rights reserved

Section 6.8

Chemical Calculations Using Chemical Equations

Exercise (Part I)

Methane (CH_4) reacts with the oxygen in the air to produce carbon dioxide and water.

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

Ammonia (NH₃) reacts with the oxygen in the air to produce nitrogen monoxide and water.

$$4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$$

Write balanced equations for each of these reactions.

Section 6.8

Chemical Calculations Using Chemical Equations

Exercise (Part II)

Methane (CH₄) reacts with the oxygen in the air to produce carbon dioxide and water.

Ammonia (NH₃) reacts with the oxygen in the air to produce nitrogen monoxide and water.

– What mass of ammonia would produce the same amount of water as 1.00 g of methane reacting with excess oxygen?

Copyright @ Cengage Learning. All rights reserved

Section 6.8

Chemical Calculations Using Chemical Equations

Let's Think About It

- · Where are we going?
 - To find the mass of ammonia that would produce the same amount of water as 1.00 g of methane reacting with excess oxygen.
- How do we get there?
 - We need to know:
 - How much water is produced from 1.00 g of methane and excess oxygen.
 - How much ammonia is needed to produce the amount of water calculated above.

.....

Section 6.8

Chemical Calculations Using Chemical Equations

Exercise (Part II)

1 mol
$$CH_4 = 2$$
 mol H_2O
1 g CH_4

 $4 \text{ mol NH}_3 = 6 \text{ mol H}_2\text{O}$

 What mass of ammonia would produce the same amount of water as 1.00 g of methane reacting with excess oxygen? 1.42 g

$$\begin{array}{l} \text{g.cHr} \times \left(\frac{1 \text{ mol-eH}_{i}}{16.05 \text{ g.cHr}}\right) \times \left(\frac{2 \text{ mol-H}_{2}O}{1 \text{ mol-eH}_{i}}\right) = 1.25 \times 10^{-1} \text{ mol-H}_{2}O \\ \\ 1.25 \times 10^{-1} \text{ mol-H}_{2}O \times \left(\frac{4 \text{ mol-H}_{1}G}{6 \text{ mol-H}_{2}O}\right) \times \left(\frac{17.049 \text{ NH}_{3}}{1 \text{ mol-H}_{1}G}\right) = 1.42 \text{ g NH}_{3} \end{array}$$

Copyright © Cengage Learning. All rights reserved