HW 5. Homework Problems: Chapter 5

1. To convert a given number of moles into the number of atoms, you would multiply by which of the following factors?

a. 6.02×10^{23} atoms/1 mol b. 1 mol/ 6.02×10^{23} atoms c. 1.66×10^{-24} atoms/1 mol d. 1 mol/ 1.66×10^{-24} atoms

2. How many molecules of water are there in 4.00 mol of water? a. 1.41×10^{24} b. 3.41×10^{23} c. 2.41×10^{24} d. 6.45×10^{24}

3. How many grams of sulfur make up 3.01 mol of sulfur atoms? [Use atomic weight: S= 32.06 g/mol]
a. 1.81 x 10²⁴ g b. 32.06 g c. 3.01 g d. 0.150 g e. 96.5 g

- 4. Calculate the number of grams in 0.125 moles of nitrogen molecules. a. 0.0107 g b. 3.50 g c. 112 g d. 1.75 g e. 0.0046 g
- 5. How many atoms are in a 10.0 g sample of molybdenum (Mo)? a. 1.10×10^{23} b. 1.43×10^{23} c. 6.27×10^{22} d. 2.53×10^{26} e. 5.78×10^{26}
- 6. The Haber process combines nitrogen gas with hydrogen gas at high temperature and pressure to produce ammonia:

 $N_2(g) + H_2(g) --> NH_3(g)$

The coefficient of the hydrogen in the balanced equation is a. 1. b. 2. c. 3. d. 6.

- 7. What is the sum of all coefficients when the following equation is balanced? $C_2H_6(g) + O_2(g) -----> CO_2(g) + H_2O(g)$ a. 13 b. 15 c. 17 d. 19 e. 21
- 8. Given $Fe_2O_3(s) + 3CO(g) \rightarrow 2Fe(s) + 3CO_2(g)$; How many CO molecules are required to react with 25 formula units of Fe_2O_3 ?
 - a. 15 CO molecules b. 75 CO molecules c. 55 CO molecules d. 40 CO molecules
- 9. How many moles of HCl can be formed when 2 mol of hydrogen gas react with chlorine? H₂(g) + Cl₂(g) -----> HCl(g) (unbalanced)

 a. 0.5 mol b. 1 mol c. 2 mol d. 4 mol e. 8 mol
- 10. $Fe_2O_3(s) + 3CO(g) \Rightarrow 2Fe(s) + 3CO_2(g)$; What mass of CO is required to react with 146 grams of Fe_2O_3 ?

a. 16.3 g CO b. 56.8 g C c. 76.7 g d. 94.7 g CO e. 14.2 g CO

11. For the reaction given below, how many moles of AlBr₃ will be produced if 12 moles of Br₂ react with 8 moles of aluminum?

 $2Al(s) + 3Br_2(l) \longrightarrow 2AlBr_3(s)$ a. 4 b. 8 c. 12 d. 16 e. 20

- 12. In the reaction given below, how many grams of sodium metal are consumed if 14.2 g of chlorine gas react to produce 23.4 g of sodium chloride? 2Na(s) + Cl₂(g) ---> 2NaCl(g)
 a. 4.3 g b. 9.2 g c. 14.2 g d. 18.8 g e. 33.0 g
- 13. The efficiency of a particular synthesis method is evaluated by determining the:
 - a. limiting reactant b. theoretical yield c. percent yield
 - d. molecular weight of the product e. stoichiometric coefficients
- 14. If 95.0 g of cesium reacts in sufficient chlorine to produce cesium chloride, what is the theoretical yield?

 $2Cs(s) + Cl_2(g) \longrightarrow 2CsCl(s)$

- a. 95.0 g b. 120. g c. 146 g d. 236 g e. 285 g
- 15. If 4 Fe₃O₄(s) (4.00 g) + O₂(g) (excess) \rightarrow 6Fe₂O₃ and actual yield is 3.55 g, what is the theoretical yield of Fe₂O₃?
 - a. 50.5 % b. 91.1 % c. 85.7 % d. 100 %