SCIENTIFIC PAPERS
  1. G. L Gutsev, L. E Johnson, K. G. Belay, C. A. Weatherford, L. L. Gutsev; B. R. Ramachandran, “Structure and magnetic properties of FenGd clusters,” European Journal of Physics D, 68, 81 (9 pages) (2014). DOI: 10.1140/epjd/e2014-40830-3

  2. G. L Gutsev, L. E Johnson, K. G. Belay, C. A. Weatherford, L. L. Gutsev; B. R. Ramachandran, “Structure and magnetic properties of Fe12X clusters,” Chemical Physics, 430, 62-68 (2014). DOI: 10.1016/j.chemphys.2013.12.014

  3. B. R. Ramachandran, S. Waithe, and L. M. Pratt “Correction to: Rearrangement reactions of lithiated oxiranes,” J. Org. Chem.. 79, 471-471 (2014). DOI: 10.1021/jo4026397

  4. L. M. Pratt, B. K. Mai, and B. R. Ramachandran, “Correction to: Carbenoid Alkene Insertion Reactions of Oxiranyllithiums” J. Org. Chem. 79, 472-472 (2014). DOI: 10.1021/jo4026572

  5. B. R. Ramachandran, S. Waithe, and L. M. Pratt “Rearrangement reactions of lithiated oxiranes,” J. Org. Chem.. 78, 10776-10783 (2013). DOI: 10.1021/jo401763v.

  6. G. L. Gutsev, C. A. Weatherford, K. G. Belay, B. R. Ramachandran, “An all-electron density functional theory study on the structure and properties of the neutral and singly charged M12 and M13 clusters: M=Sc–Zn,” J. Chem. Phys. 138, 164303 (2013). DOI: 10.1063/1.4799917.

  7. G. L. Gutsev, C. A. Weatherford, P. Jena, B. R. Ramachandran, “Competition between surface chemisorption and cage formation in Fe12O12 clusters,” Chem. Phys. Lett. 556, 211-216 (2013). DOI: 10.1016/j.cplett.2012.11.054.

  8. B. R. Ramachandran, S. D. Baker, G. Suravajhula, and P. Derosa, “Selective complexation of alkali metal ions using crown ethers derived from calix[4]arenes: A computational investigation of the structural and energetic factors,” J. Incl. Phenomena and Macrocyclic Chem. 75, 15-195 (2013). DOI: 10.1007/s10847-012-0160-6.

  9. L. M. Pratt, B. K. Mai, and B. R. Ramachandran, “Carbenoid Alkene Insertion Reactions of Oxiranyllithiums” J. Org. Chem. 77, 8605-8614 (2012). DOI: 10.1021/jo301550y.

  10. G. L. Gutsev, C. A. Weatherford, P. Jena, E. Johnson, B. R. Ramachandran, “Structure and Properties of Fen, Fen-, and Fen+ Clusters, n = 7 – 20”. J. Phys. Chem. A 116, 10218-10228 (2012). DOI: 10.1021/jp300403p.

  11. G. L. Gutsev, C. A. Weatherford, P. Jenna, E. Johnson, and B. R. Ramachandran, “Erratum: Structural Patterns in Carbon Chemisorption on an Icosahedral Iron Cluster,” J. Phys. Chem. C 116, 7050-7061 (2012). DOI: 10.1021/jp300403p.

  12. B. Ramachandran and L. M. Pratt, “Computational perspectives on organolithium carbenoids,” in Practical Aspects of Computational Chemistry II: An Overview of the Last Two Decades and Current Trends, Chapter 13, pp. 471-510, Eds. J. Leszczynski, M. K. Shukla, and H. de Rode, Springer, Dordrecht, 2012.

  13. G. L. Gutsev, C. A. Weatherford, P. Jenna, E. Johnson, and B. R. Ramachandran, “Structural Patterns in Carbon Chemisorption on an Icosahedral 2 Iron Cluster,” J. Phys. Chem. C 116, 7050-7061 (2012). DOI: 10.1021/jp300403p.  PDF.

  14. B. Ramachandran, Purnima Kharidehal, Lawrence M. Pratt, Stewart Voit, Fabian N. Okeke, and Monique Ewan, “Computational Strategies for Reactions of Aggregated and Solvated Organolithium Carbenoids, J. Phys. Chem. A 114, 8423-8433 (2010). DOI: 10.1021/jp104246k. PDF.

  15. L. M. Pratt, T. Phuong, N. V. Nguỹên, and B. Ramachandran, “Halomethyllithium carbenoid cyclopropanation reactions: A computational study of the effects of solvation and aggregation,” Bull. Chem. Soc. Japan 82, 1107-1125 (2009).DOI: 10.1246/bcsj.82.1107 PDF.

  16. J. D. Nelson, J. Carpenter, S. A. Napper, and B. Ramachandran, “Innovative Administration Supports Innovative Education,” Proceedings of the 38th ASEE/IEEE Frontiers in Education (FIE) Conference, Saratoga Springs, NY; October 22-25, art. no. 4720387, pp. T2G3-T2G8 (2008). DOI: 10.1109/FIE.2008.4720387 PDF.

  17. M. M. Ghouri, S. Singh, and B. Ramachandran, "Scaled density functional theory correlation functionals," J. Phys. Chem. A (Robert E. Wyatt Festschrift) 111, 10390-10399 (2007). DOI: 10.1021/jp0728353. PDF.

  18. L. Pasumansky, C. J. Collins, L. M. Pratt, N.V. Nguỹên, B. Ramachandran, and B. Singaram, "Solvent and temperature effects on the reduction and amination reactions of electrophiles by lithium dialkylaminoborohydrides," J. Org. Chem. 72, 971-976 (2007). DOI: 10.1021/jo062154o   PDF.

  19. B. Ramachandran, "Scaling dynamical correlation energy from Density Functional Theory correlation functions," J. Phys. Chem. A (Donald G. Truhlar Festschrift) 110, 396-403 (2006). DOI: 10.1021/jp050584x. PDF.

  20. L. M. Pratt and B. Ramachandran, "A Computational Study of Oxiranyllithium," J. Org. Chem. 70, 7238-7242 (2005). DOI: 10.1021/jo050887n PDF.

  21. H. F. Ji, Y. Zhang, V. V. Purushotham, S. Kondu, B. Ramachandran, T. Thundat, and D. T. Haynie,  "1,6-Hexanedithiol monolayer as a receptor for specific recognition of alkylmercury," The Analyst, 130,1577-1579 (2005). DOI: 10.1039/b513144hPDF.

  22. L. Pratt, N.V. Nguyen, and B. Ramachandran, "Computational strategies for evaluating barrier heights for gas phase reactions of lithium enolates," J. Org. Chem. 70, 4279-4283 (2005) . DOI: 10.1021/jo0503409. PDF.

  23. T. Xie, J. M. Bowman, J. W. Duff, M. Braunstein, and B. Ramachandran, "Quantum and quasiclassical studies of the O(3P) + HCl ® OH + Cl(2P) reaction using benchmark potential surfaces," J. Chem. Phys. 122, 014301 (2005). PDF.

  24. T. Xie, J. M. Bowman, K. A. Peterson, and B. Ramachandran, "Quantum Calculations of the Rate Constants for the O(3P) + HCl Reaction on new Ab Initio 3A" and 3A' Surfaces," J. Chem. Phys. 119, 9601-9608 (2003). PDF
  25.  
  26. B. Ramachandran and K. A. Peterson,  "Potential Energy Surfaces for the 3A" and 3A' Electronic States of the O(3P) + HCl System," J. Chem. Phys. 119, 9590-9600 (2003). PDF
  27.  
  28. B. Ramachandran, N. Vegesna, and K. A. Peterson, "Effect of Eletron Correlation and Scalar Relativistic Corrections on the Thermochemical and Spectroscopic Properties of HOF," J. Phys. Chem. A 107, 7938-7944 (2003). PDF

  29. L. M. Pratt, B. Ramachandran, J. D. Xidos, C. J. Cramer, and D. G. Truhlar, "Structures and Aggregation States of Fluoromethyllithium and Chloromethyllithium Carbenoids in the Gas Phase and in Ethereal Solvent," J. Org. Chem. 67, 7607-7612 (2002). PDF

  30. S. Skokov, S. Zou, J. M. Bowman, T. C. Allison, D. G. Truhlar, Y. Lin, B. Ramachandran, B. C. Garrett, and B. J. Lynch, "Thermal and state-selected rate coefficients for the O(3P) + HCl reaction and new calculations for the barrier height and width," J. Phys. Chem. A105 2298-2307 (2001) PDF

  31. Y. Lin, B. Ramachandran, K. Nobusada, and H. Nakamura, "Quantum-classical correspondence in the O(3P) + HCl and Cl(2P) + OH reactions for total angular momentum J = 0," J. Chem. Phys. 114, 1549-1558 (2001). PDF

  32. B. Ramachandran, N. Balakrishnan, and A. Dalgarno, "Vibrational-rotational distributions of NO formed from N + O2 reactive collisions," Chem. Phys. Lett. 332, 562-568 (2000). PDF

  33. K. Nobusada, H. Nakamura, Y. Lin, and B. Ramachandran, "Quantum reaction dynamics of O(3P) + HCl on a new ab initio potential energy surface," J. Chem. Phys. 113, 1018-1026 (2000). PDF.
  34.  
  35. B. Ramachandran, "Energy disposal in the O(3P) + HCl reaction: Classical dynamics and comparison to experiment ," J. Chem. Phys. 112, 3680-3688 (2000). PDF

  36. B. Ramachandran, E.A. Schrader III,  J. Senekowitsch, and R. E. Wyatt, "Dynamics of the O(3P) + HCl reaction on the 3A'' electronic state:  A new ab initio potential energy surface, quasi-classical trajectory study, and comparison to experiment ," J. Chem. Phys. 111, 3862-3873 (1999).  PDF or PS

  37. T.C. Allison, B. Ramachandran,  J. Senekowitsch, D. G. Truhlar, and R. E. Wyatt, "Variational Transition State Theory Calculations of Thermal Rate Coefficients for the O(3P) + HCl Reaction," J. Mol. Struct. (Theochem) 454, 307 (1998). PDF or PS.

  38. H. Zhang, B. Ramachandran,  J. Senekowitsch, and R.E. Wyatt, “Determination of the spectroscopic constants and anharmonic forcefields for HOCl and DOCl using Scaled External Correlation,” J. Mol. Struct. THEOCHEM 487, 75 (1999).

  39. B. Ramachandran, J. Senekowitsch and R.E. Wyatt, "A quasiclassical trajectory study of the reaction O(3P) + HCl (v=2, j=1,6,9) --> OH (v',j') + Cl(2P) on a new potential surface," Chem. Phys. Lett. 270, 387 (1997). 

  40. B. Ramachandran, J. Senekowitsch and R.E. Wyatt, "A new potential surface for the reaction O(3P) + HCl (X 1S+) --> OH (X 2P) + Cl (2P)," J.Mol. Struct. (Theochem) 388, 57 (1996). 

  41. B. Ramachandran, "Examining the shapes of atomic orbitals using Mathcad," J. Chem. Educ. 72, 1082 (1995).

  42. B. Ramachandran, X. Wu and R.E. Wyatt, "A single arrangement variational method for quantum mechanical reactive scattering," in Toward Teraflop Computing and Other Grand Challenge Applications, Eds. R. Kalia and P. Vashishta, Nova Science, Commack, NY (1995).
  43.  
  44. B. Ramachandran and P.C. Kong, "Three dimensional graphical visualization of one-electron atomic orbitals," J. Chem. Educ. 72, 406 (1995).
  45.   
  46. B. Ramachandran, "MOBY Molecular Modeling on the PC, Version 1.5," software review, J. Chem. Educ. 71, A228 (1994).
  47.  
  48. X. Wu, B. Ramachandran and R.E. Wyatt, "A single arrangement variational method for reactive scattering: total and state-resolved reaction probabilities," J. Chem. Phys. 101, 9395 (1994).
  49.  
  50. X. Wu, B. Ramachandran and R.E. Wyatt, "A single arrangement variational method for total reaction probabilities," Chem. Phys. Lett. 214, 118 (1993).
  51.  
  52. B. Ramachandran and K. G. Kay, "The influence of classical resonances on quantum energy levels," J. Chem. Phys. 99, 3659 (1993).
  53.    
  54. B. Ramachandran, M. D'Mello and R. E. Wyatt, "The Newton Variational Functional for the Log-Derivative Matrix: Use of the Reference Energy Green's Function in an Exchange Problem," J. Chem. Phys. 93, 8110, (1990).

  55. B. Ramachandran and K. G. Kay, "Semiclassical Expectation Values by Adiabatic Switching: Trapping and Tunneling in the Chaotic Regime," Phys. Rev. A 41, 1757, (1990).

  56. B. Ramachandran and R. E. Wyatt, "The Schwinger and Newton Variational Methods for the Log-Derivative Matrix," J. Chem. Phys. 91, 1096, (1989).

  57. B. Ramachandran and R. E. Wyatt, "How Variational Principles in Scattering Theory Work," in Supercomputer Algorithms for Reactivity, Dynamics and Kinetics of Small Molecules, NATO ASI Series, Ed. A. Lagana (Kluwer Academic Publishers, Holland, 1989).

  58. B. Ramachandran, T. G. Wei and R. E. Wyatt, "The Role of Basis Set Expansions in the Relative Performanaces of the Schwinger and Newton Variational Principles," Chem. Phys. Lett. 151, 540 (1988).

  59. B. Ramachandran, T. G. Wei and R. E. Wyatt, "The Relative Performances of the Kohn, Schwinger and Newton Variational Principles in Scattering Theory," J. Chem. Phys. 89, 6785 (1988).

  60. K. G. Kay and B. Ramachandran, "Classical and Quantum Pseudoergodic Regions of the Henon-Heiles System," J. Chem. Phys. 88, 5688 (1988).

  61. B. Ramachandran and K. G. Kay, "Local Ergodicity as a Probe for Chaos in Quantum Systems: Application to the Henon- Heiles System," J. Chem. Phys. 86, 4628 (1987).
  62.   
  63. B. Ramachandran and K. G. Kay, "Semiclassical Ergodic Properties of the Henon-Heiles System," J. Chem. Phys. 83, 6316 (1985).