
5.5. Partial Molar Quantities
Partial Molar quantities are required to deal with open systems, i.e., systems that
permit mass transfer between themselves and surroundings.

Consider an open system with n1 moles of component 1, n2 moles of component 2,
n3 moles of component 3, etc..  We would write the free energy change dG for
such a system as
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In the second equality, the quantities G1, G2, etc.. are called partial molar free
energies.  Similarly, we may define partial molar volumes, partial molar
enthalpies, internal energies, and entropies:
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Because of their great importance in the thermodynamics of solutions, we discuss
partial molar volumes and partial molar free energies further.
Partial Molar Volume:
The total volume of a solution of, say, two miscible liquids is given by

(5.33)V = n1V1 + n2V2.

The units of partial molar volumes are the same as molar volumes.  The
relationship between the two, i.e., partial molar volume and the molar volume is a
subtle but important one.
� In the case of ideal solutions, the partial molar volume of each component will

be identical to the molar volume of the pure substance in the absence of the
other component.  

� However, in the case of non-ideal solutions, the presence of the second
component has a measurable influence on the molar volume of the first
component and vice versa.  Therefore, in general,

V1 � V1
� and V2 � V2

�.
The standard state for defining partial molar quantities is a 1 molal solution, i.e., a
solution that contains 1 mol of the substance in 1.0 kg of solvent.



Physical Interpretation of partial molar quantities:
It may appear that there is something �not quite right� about the following two
equations:

V = n1V1 + n2V2, where
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Based on what we have seen so far, the first equation should be
which is simply another application of the chain rule in partialdV = V1dn1 + V2dn2,

differentiation. 
However, Eq. (5.33) can indeed be justified on physical grounds as follows.
Consider a large volume of solution containing ethanol (E) and water (W).  We
now add a small amount of water, say, ∆nW moles of water, to this solution. We
would want to express the new volume of the solution as

Vnew = Vold + �nWVW,m
� ,

where  is the molar volume of pure water.  However, this will give us the finalVW,m
�

volume only in the case of an ideal solution. In the ethanol-water solution, the
effective molar volumes of both substances are different from their molar volumes
in the absence of the other substance.  Designating the actual molar volume of
water in the presence of ethanol as VW,m, the change of volume of the solution is

�V = �nWVW,m

Therefore, we get

VW,m = �V
�nW

.

The partial molar volume of water, VW, is defined as the value of the fraction on
the right hand side in the limit of an infinitesimal change in the number of moles
of water. Mathematically, we write
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.

Once we impose the conditions that temperature, pressure and the number of
moles of ethanol, nE, are to be held constant, the derivative on the right hand side
becomes identical to the definition of the partial molar volumes used above and in
Eq. (5.33):
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An example of the applications of Eq. (5.33):
Consider a 40% by mass ethanol solution of ethanol in water at 25°C.  From the
figure of partial molar volumes of ethanol and water in the presence of each other,
estimate the volume of 1000 g of the solution.  Compare this to the volume that
would have resulted if the solution was ideal.  Density of ethanol = 0.785 g mL�1

and pure water = 0.997 g mL�1 , at this temperature.

In 1000 g of solution, we have 400 g
ethanol (E) and 600 g water (W).

nE =
400 g

46.07 g mol−1 = 8.68 mol.

nW =
600 g

18.02 g mol−1 = 33.30 mol.

xE = 0.207; xW = 0.793.

From the figure, we estimate that at
these mole fractions, the partial molar
volumes are

VE = 55.0 mL mol−1;
VW = 17.5 mL mol−1.

Therefore, using Eq. (5.33), we get

V = nEVE + nWVW = 8.68 � 55.0 + 33.30 � 17.5
= 1060 mL.

If the solution was ideal, we would use the molar volumes of the pure substances
to obtain

V = 8.68 mol �
46.07 g mol−1

0.785 g mL−1 + 33.30 mol �
18.02 g mol−1

0.997 g mL−1

= 1111 mL.

Therefore, we see that the non-ideal nature of the solution is reflected in a
contraction of volume by 51 mL.



Another example of applying Eq. (5.33):

Density of a 50% by mass solution of ethanol in water at 25°C is 0.914 g mL�1.
Given that the partial molar volume of water at this composition is 17.4 mL
mol�1,what is the partial molar volume of ethanol?

No. of moles of ethanol in 100 g of solution: 50 g/46.07 g mol�1 = 1.085 mol.
No. of moles of water in 100 g of solution: 50 g/18.02 g mol�1 = 2.775 mol.
Now, since we getV = nEVE + nWVW,

VE = V − nWVW
nE

=
�
�100 g/0.914 g mL−1 �

� − 2.775 mol � 17.4 mL mol−

1.085 mol
= 56.33 mLmol−1.

A third example of using Eq. (5.33) is provided in Homework Assignment # 6.

Partial molar Free Energy:

Partial molar free energy is commonly refered to as the �chemical potential,� and



5.7.  Raoult�s Law and Activities

Consider a binary system consisting of a solution and a vapor phase, each
containing components A and B. The equilibrium condition is:
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If the vapor phase behaves ideally, we may write
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Now, at equilibrium, we may write
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For the pure liquids in equilibrium with their vapors, we write
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From the last two equations, we write (all equations written for component A can
also be written for B):
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If the solution behaves ideally (i.e., obeys Raoult�s law), then PA/P*A = xA.
Therefore, we get

�A
sol = �A

� + RT ln xA.

For non-ideal solutions, the ratio PA/P*A is called the activity of A, aA. In this case,
we write

�A
sol = �A

� + RT ln aA.

As PA approaches P*A, it is clear that the activity approaches unity.  This is the
basis for assigning the value of 1 to the activities of all pure substances.

See problem 5.32.



5.8. Colligative Properties
Let us consider the consequence of dissolving a nonvolatile solute B in a solvent
A.  Since the solute cannot be present in the vapor phase, this immediately leads to
a lowering of vapor pressure, because xA < 1 and, therefore, PA = xAP*A < P*A.
This lowering of vapor pressure is responsible for both lowering the freezing point
as well as raising the boiling point of the solvent.
Freezing Point Depression:
For the equilibrium between the liquid and solid phases, we require µl
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Now we rearrange and integrate both sides, the LHS from a mole fraction of  xA =
1 (pure solvent) to the solvent mole fraction in solution, xA < 1, and
correspondingly, the RHS from a liquid-solid equilibrium temperature of T*f
(freezing point of the pure solvent) to T, the freezing point of the solution. This
yields
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We may re-write this as
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We now make two simplifications: for small xB, ln(1�xB) ≈ �xB (see Eq. 5.117) and
T*f Tf  ≈ T*f

2. This gives
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which can be further simplified to yield (see the text above Eq. 5.119)

(5.119, 5.120)�Tf =
RTf

�2MA
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where Kf is called the cryoscopic constant of the solvent.



Boiling Point Elevation:
By considering the liquid-vapor equilibrium in which the vapor contains only the
component A, we can derive an expression analogous to that obtained above:

(5.126)�Tb =
RTb
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mB or �Tb = KbmB,

where Kb is called the ebullioscopic constant of the solvent.
The elevation of boiling point is a rather weak effect compared to the depression
of freezing point.  Therefore, the latter property is overwhelmingly used for the
practical applications of colligative properties.

Practical Applications:
� Problems 5.37, 5.38, 5.44
� These equations are useful to determine the freezing points or boiling points of

various solutions of nonvolatile solutes.
Problem 5.54

� A somewhat �liberal� interpretation of Eq. (5.115) or (5.116) can be used to
calculate the solubility of various solutes at temperature T in a solvent whose
enthalpy of fusion and freezing point are known.
Problem 5.46

� The �simplified� forms are also useful to determine the molar masses of
unknown solutes using Eq. (5.122).
Problems 5.50, 5.53

Colligative properties depend on number of �particles� in solution rather than
actual �concentration.�  For instance, a 1 m solution of NaCl leads to a 2 m
solution of ions (Na+ and Cl�). Such a solution, therefore, will yield twice the
expected ∆Tf.  This effect must be taken into account when dealing with ionic
substances (See problem 5.24).


