SCIENTIFIC PAPERS
  1. Y. Zheng, T. Zheng, S. Luo, H.A. Tauqeer, Y. Zhuo, S. Cao, Z. Bi, L.G. Gutsev, D. Liu, B.R. Ramachandran, G.L. Gutsev, A.S. Vasenko and X. Xu, “Complementary molecular passivation of multiple surface defects for efficient and stable inverted perovskite solar cells,” Small xx, xxxx (2025). DOI: 10.1002/smll.202505659

  2. Y. Zhuo, T. Zheng, S. Cao, S. Luo, Z. Bi, Y. Zheng, B. Taye, X. Chen, L.G. Gutsev, V.V. Ozerova, N.A. Emelianov, S. Vasil'ev, A. Shestakov, H. Li, C. Wang, Y. Mo, G. Gutsev, B. Ramachandran, N. Li, E. Maluta, S. Aldoshin, P. Troshin, and X. Xu, “Mitigating Trap States in Halide Perovskite Solar Cells Through the Synergy of Coordination, Hydrogen and Halogen Types of Bonding,” Journal of Materials Chemistry A 13, 21589-216000 (2025). DOI: 10.1039/D5TA02332G

  3. S. Luo, S. Cao, Z. Bi, Y. Zheng, V. V. Ozerova, N. A. Emelianov, N. A. Slesarenko, L. A. Frolova, L. G. Gutsev, B. R. Ramachandran, G. L. Gutsev, P. A. Troshin and X. Xu, “Interface contact optimization and defect passivation via Tyramine Hydrochloride for efficient and stable inverted perovskite solar cells,” Nano Energy 139, 110944 (2025). DOI: 10.1016/j.nanoen.2025.110944

  4. S. Cao, S. Luo, T. Zheng, Z. Bi, Y. Zheng, Y. Zhuo, J. Mo, L. G. Gutsev, N. A. Emelianov, V. V. Ozerova, N. A. Slesarenko, G. L. Gutsev, S. M. Aldoshin, P. A. Troshin, F. Sun, B. R. Ramachandran, Y. Tian and X. Xu, “Hybrid Self-Assembled Molecular Interlayers for Efficient and Stable Inverted Perovskite Solar Cells,” Advanced Energy Materials 2025, 2405367 (2025). DOI: 10.1002/aenm.202405367

  5. S. Luo, S. Cao, T. Zheng, Z. Bi, Y. Zheng, Y. Li, B.Z. Taye, V. V. Ozerova, L. A. Frelova, N. A. Emilionov, E. D. Tasarov, Z. Liang, L.G. Gutsev, S.M. Aldoshin, B. R. Ramachandran, P. A. Torshin, X. Xu, “Melamine holding PbI2 with three “arms”: an effective chelation strategy to control the lead iodide to perovskite conversion for efficient and stable inverted perovskite solar cells,” Energy & Environmental Science, 18, 2436-2451 (2025); DOI: 10.1039/D4EE04692G

  6. Y. Zheng, X. Zhang, S. Luo, Z. Bi, V. Ozerova, N. Slesarenko, N. A. Emelianov, E. Shchurik, L. Gutsev, B. Ramachandran. G. Gutsev, Z. Ren, G. Li, S. Aldoshin, P. Torshin, X. Xu, “In situ reactive modification strategy to enhance the performance of n‐i‐p perovskite solar cells,” Journal of Materials Chemistry A 13, 1384-1398 (2025). DOI: 10.1039/d4ta06793b

  7. Z. Chen, S. Cao, S. Luo, L. Gutsev, X. Chen, V. Ozerova, N. Emelianov, N. Slesarenko, V. Bolshakova, Y. Zheng, Z. Bi, Zhuoneng, S. Aldoshin, P. Troshin, B. Ramachandran, G. Gutsev, H-Y. Hsu, Q. Xue, X. Xu, “Enhanced performance and stability of perovskite solar cells through surface modification with benzocaine hydrochloride,” ACS Materials and Interfaces 16, 50706-50716 (2024); DOI: 10.1021/acsami.4c09850

  8. S. Cao, Z. Bi, T. Zheng, S. Luo, L. G. Gutsev, B. R. Ramachandran, V. V. Ozerova, N. A. Emelianov, N. A. Slesarenko, Y. Zheng, B. Z. Taye, G. L. Gutsev, S. M. Aldoshin, P. A. Troshin, X. Xu, “Revealing interaction of fluorinated propylamine hydrochloride with precursor and defect states of perovskite films towards efficient flexible solar cells,” Advanced Functional Materials, 34, 2405078, (2024) DOI: 10.1002/adfm.202405078

  9. G. L. Gutsev, K. M. Tibbetts, L. G. Gutsev, S. M. Aldhoshin, and B. R. Ramachandran, “Nitrogen reduction to ammonia on a Fe16 nanocluster: A computational study of catalysis,” Journal of Physical Chemistry A 127, 9052-9068 (2023). DOI: 10.1021/acs.jpca.3c05426

  10. M. M. Elnaggar, A. V. Mumyatov, N. A. Emelianov, L. G. Gutsev, V. V. Ozerova, I. V. Fedyanind, Y. V. Nelyubina, S. I. Troyanov, Bala R. Ramachandran, and Pavel A. Troshin, “What defines the perovskite solar cell efficiency and stability: Fullerene-based ETL structure or film morphology?” Sustainable Energy & Fuels, 7, 3893-3901 (2023). DOI: 10.1039/D3SE00432E

  11. V. V. Ozerova, N. A. Emelianov, L. G. Gutsev, D. V. Korchagin, G. V. Shilov, N. N. Dremova, B. R. Ramachandran, A. Yu. Sukhorukov, S. M. Aldoshin, L. A. Frolova and P. A. Troshin, “Enhanced photostability of multication lead halide perovskites through the use of azaadamantane-based modifiers,” Materials Today Chemistry, 30, 101590 (2023). DOI: 10.1016/j.mtchem.2023.101590

  12. L. G. Gutsev, S. N. Nations, B. R. Ramachandran, G. L. Gutsev, S. Wang, S. M. Aldoshin, Y. Duan, “Redox Chemistry of the subphases of α-CsPbI2Br and β-CsPbI2Br: Theory Reveals New Potential for Photostability,” Nanomaterials, 13, Art. No. 276 (2023). DOI: 10.3390/nano13020276

  13. J. M. Shusterman, G. L. Gutsev, H. A. López Peña, B. R. Ramachandran, and K. M. Tibbetts, "Coulomb Explosion Dynamics of Multiply Charged para-Nitrotoluene Cations," Journal of Physical Chemistry A 126, 6617-6627 (2022); DOI: 10.1021/acs.jpca.2c04395

  14. G. L. Gutsev, K. M. Tibbetts, L. G. Gutsev, S. M. Aldhoshin, and B. R. Ramachandran, "Mechanisms of complete dissociation of CO2 on iron clusters," ChemPhysChem 23, e202200277 (2022) ; DOI: 10.1002/cphc.202200277

  15. S. N. Nations, L. G. Gutsev, B. R. Ramachandran, S. M. Aldoshin, Y. Duan, S. Wang, “First-principles study of the defect-activity and optical properties of FAPbCl3,” Materials Advances 3, 3897-3905 (2022). DOI: 10.1039/d2ma00087c

  16. N. Dhariwal, A. S. M. Miraz, B. R. Ramachandran, and C. D. Wick, “Role of metal/ceramic interactions on the mechanism of interfacial failure: Study of Cr/TiN using a new modified embedded-atom interatomic potential,” Materials & Design, 210, 110120 (2021). DOI: 10.1016/j.matdes.2021.110120

  17. G. L. Gutsev, S. M. Aldoshin, L. G. Gutsev, and B. R. Ramachandran, “Evolution of ferromagnetic and antiferromagnetic states in Iron Nitride clusters FenN and FenN2 (n = 1-10),” Journal of Physical Chemistry A 125, 7891-7899 (2021) DOI: 10.1021/acs.jpca.1c05769

  18. L. A. Frolova, L. G. Gutsev, B. R. Ramachandran, N. N. Dremova, S. M. Aldoshin, and P. A. Troshin, “Exploring CsPbI3-FAI alloys: Introducing low-dimensional Cs2FAPb2I7 absorber for efficient and stable perovskite solar cells,” Chemical Engineering Journal 426, 131754 (2021). DOI: 10.1016/j.cej.2021.131754

  19. G. L. Gutsev, K. M. Tibbetts, L. G. Gutsev, and B. R. Ramachandrandran, “Superhalogens among 3d-metal compounds: MF4, MF6, MF12, and MF18 (M=Sc–Zn),” Journal of Physical Chemistry A, Alexander Boldyrev Festschrift 125, 4409-4419 (2021) DOI: 10.1021/acs.jpca.1c02884

  20. A. F. Akbulatov, M. I. Ustinova, L. Gutsev , B. R. Ramachandran , S. A. Tsarev, N. N. Dremova, I. Zhidkov, S. Yu. Luchkin, E. Z. Kurmaev, K. J. Stevenson, S. M. Aldoshin, and P. A. Troshin, “When iodide meets bromide: Halide mixing facilitates the light-induced decomposition of perovskite absorber films,” Nano Energy, 86, 106082 (2021). DOI: 10.1016/j.nanoen.2021.106082

  21. A.S.M. Miraz, W. J. Meng, B. R. Ramachandran, and C. D. Wick, “Computational observation of the strengthening of Cu/TiN metal/ceramic interfaces by sub-nanometer interlayers and dopants,” Applied Surface Science, 554, 149562 (2021). DOI: 10.1016/j.apsusc.2021.149562

  22. A. A. Parfenov, O. R. Yamilova, L. G. Gutsev, D. K. Sagdullina, A. V. Navikov, B. R. Ramachandran, K. J. Stephenson, S. M. Aldoshin, P. A. Troshin, “Highly sensitive and selective ammonia gas sensor based on FAPbCl3 lead halide perovskite,” Journal of Materials Chemistry C, 9, 2561-2568 (2021). DOI: 10.1039/D0TC03559A

  23. B. Chen, G. L. Gutsev, W. Sun, X. Kuang, C. Lu, L. G. Gutsev, B. R. Ramachandran, S. M. Aldoshin, “Dissociation of dinitrogen on iron clusters: A detailed study of the Fe16 + N2 case,” Physical Chemistry Chemical Physics, 23, 2166-2178 (2021). DOI: 10.1039/D0CP05427E

  24. A. S. M. Miraz, N. Dhariwal, W. J. Meng, B. R. Ramachandran, and Collin D. Wick, “Shear Strength of M/TiN (M=Ti or Cu) Interfaces – Development and Application of Interatomic Potentials for Pure, Binary and Ternary Systems of Cu, Ti and N,” Materials & Design, 196, 109123, 2020. DOI: 10.1016/j.matdes.2020.109123

  25. G. L. Gutsev, S. L. McPherson, H. A. López Peña, D. A. Boateng, L. G. Gutsev, B. R. Ramachandran, and K. M. Tibbetts, “Dissociation of Singly and Multiply Charged Nitromethane Cations: Femtosecond Laser Mass Spectrometry and Theoretical Modeling,” Journal of Physical Chemistry A, 124, 7427-7438 (2020). DOI: 10.1021/acs.jpca.0c06545

  26. S. Bhasker-Ranganath, C. D. Wick, and B. R. Ramachandran, “Computational insights into the molecular mechanisms for chromium passivation of stainless-steel surfaces,” Materials Today Chemistry 17, 100298 (2020). DOI: 10.1016/j.mtchem.2020.100298.

  27. X. Zhang, S. Shao, A. S. M. Miraz, C.D. Wick, B.R. Ramachandran, W.J. Meng, “Low temperature growth of Cu thin films on TiN(001) templates: Structure and Energetics,” Materialia 12, 100748 (2020). DOI: 10.1016/j.mtla.2020.100748

  28. G. L. Gutsev, H. A. López Peña, S. L. McPherson, D. A. Boateng, B. R. Ramachandran, L. G. Gutsev, and K. M. Tibbetts, “From Neutral Aniline to Aniline Trication: A Computational and Experimental Study,” Journal of Physical Chemistry A 124, 3120-3134 (2020). DOI: 10.1021/acs.jpca.0c00686

  29. A. S. M. Miraz, E. Williams, W. J. Meng, B. R. Ramachandran, and C. D. Wick, “Improvement of Interfacial Shear Strength of Ti/TiN Nanolaminates by Doping– A First Principles Density Functional Theory Study,” Applied Surface Science 517, 146185 (2020). DOI: 10.1016/j.apsusc.2020.146185

  30. A. Boldyreva, L. Frolova, I. Zhidkov, L. Gutsev, E. Kurmaev, B. R. Ramachandran, V. Petrov, K. Stephenson, S. Aldoshin, P. Troshin, “Unravelling the Material Composition Effects on the Gamma Ray Stability of Lead Halide Perovskite Solar Cells: MAPbI3 Breaks the Records,” Journal of Physical Chemistry Letters 11, 2630-2636 (2020). DOI: 10.1021/acs.jpclett.0c00581

  31. P. R. Alburquerque, B. R. Ramachandran, T. Junk, and T. N. V. Karsili, “Hydrogen-Deuterium Exchange in Basic Near-Critical and Supercritical Media: An Experimental and Theoretical study,” Journal of Physical Chemistry A 124, 2530-2536 (2020). DOI: 10.1021/acs.jpca.9b10892

  32. A. S. M. Miraz, S. Sun, S. Shao, W. J. Meng, B. R. Ramachandran, and C.D. Wick, “Computational Study of Metal/Ceramic Interfacial Adhesion and Barriers to Shear Displacement,” Computational Materials Science 168, 104-115 (2019). DOI: 10.1016/j.commatsci.2019.06.006

  33. S. B. Ranganath, C. D. Wick, and B. R. Ramachandran, “Role of structure and oxidation states in the passivation of stainless steel by chromium,” in Proceedings of the 8th Annual International Conference on Sustainable Energy and Environmental Sciences (SEES 2019), pp. 10-14, Global Science and Technology Forum, Singapore, 2019. DOI: 10.5176/2251-189X_SEES19.65; PDF

  34. L. G. Gutsev, B. R. Ramachandran, and G. L. Gutsev, “Pathways of Growth of CdSe Nanocrystals from Nucleant  (CdSe)34 Clusters,” Journal of Physical Chemistry C 122, 3168-3175 (2018). DOI: 10.1021/acs.jpcc.7b12716

  35. G. L. Gutsev, K. G. Belay, L. G. Gutsev, B. R. Ramachandran, and P. Jena, “Effect of Hydrogenation on the Structure and Magnetic Properties of an Iron Oxide Cluster,” Physical Chemistry Chemical Physics 20, 4546-4533 (2018). DOI: 10.1039/c7cp08224j

  36. S. Sun, B. R. Ramachandran, and C.D. Wick, “Solid, Liquid, and Interfacial Properties of TiAl Alloys:  Parameterization of a New Modified Embedded Atom Method Model,” Journal of Physics: Condensed Matter 30, 075002 (2018). DOI: 10.1088/1361-648X/aaa52c

  37. X. Zhang, B. Zhang, Y. Mu, S. Shao, C. D. Wick, B. R. Ramachandran, and W. J. Meng, “On failure of ceramic/metal/substrate interfacial regions under shear loading,” Acta Materialia 138, 224-236 (2017). DOI: 10.1016/j.actamat.2017.07.053

  38. G. L Gutsev, K. G Belay, L. G. Gutsev, B. R. Ramachandran, "Geometrical and magnetic structure of iron oxide clusters (FeO)n for n > 10," Computational Materials Science 137, 134-143 (2017). DOI: 10.1016/j.commatsci.2017.05.028

  39. B. R. Ramachandran, S. Sun, C. D. Wick, “Oxidation of iron and iron-chromium surfaces: Preliminary results from computational studies,” in Proceedings of the 4th Annual Conference on Materials Science, Metals, and Manufacturing (M3), pp. 46-52, Global Science and Technology Forum, Singapore, 2017. DOI: 10.5176/2251-1857_M317.20

  40. M. Ferdows, D. Liu, and B. R. Ramachandran, “02-D Magnetohydrodynamics Boundary Layer Flow of Cu-Ag-TiO3-Al2O3-H2O-C2H6O2 Mixtures: Explicit Numerical and Stability Approach,” Journal of Modern Mechanical Engineering and Technology 3, 41-59 (2016).

  41. G. L. Gutsev, B. R. Ramachandran, L. G. Gutsev, and K. V. Bozhenko, “A comparative study of the 3d-metal oxide clusters (FeO)n, (CoO)n, and (NiO)n, (n = 1-10),” Physical Chemistry Chemical Physics, 18, 27858-27867 (2016). DOI: 10.1039/c6cp03241a

  42. M. Ferdows, D. Liu, and B. R. Ramachandran, “Boundary Layer Slip and Heat Transfer in Stagnation Point Flow over a Steady Stretching Surface Embedded in a Porous Medium with Heat Sources,” British Journal of Mathematics & Computer Science, 18, BJMCS.28212 (2016). DOI: 10.9734/BJMCS/2016/28212

  43. G. L. Gutsev, K. G Belay, L. G. Gutsev and B. R. Ramachandran, “Structure and Properties of Iron Oxide Clusters: from Fe6 to Fe6O20 and from Fe7 to Fe7O24,” Journal of Computational Chemistry, 37, 2527-2536 (2016). DOI: 10.1002/jcc.24478

  44. S. B. Ranganath, A. S. Hassan, B. R. Ramachandran and Collin D. Wick, “Role of Metal-Lithium Oxide Interfaces in the Extra Lithium Capacity of Metal Oxide Lithium-Ion Battery Anode Materials,” Journal of the Electrochemical Society, 163, A2172-A2178 (2016). DOI: 10.1149/2.0281610jes

  45. S. B. Ranganath, S. Hartman, A. S. Hassan, C. D. Wick, and B. Ramachandran, “Interfaces in Metal, Alloy, and Metal Oxide Anode Materials for Lithium Ion Batteries,” in Proceedings of the 3rd Annual Conference on Materials Science, Metals, and Manufactuding (M3), pp. 83-87, Global Science and Technology Forum, Singapore, 2016. DOI: 10.5176/2251-1857_M316.28.

  46. A. S. Hassan, K. Moyer, B. R. Ramachandran, and C. D. Wick, “Comparison of Storage Mechanisms in RuO2, SnO2, and SnS2 for Lithium-Ion Battery Anode Materials,” Journal of Physical Chemistry C  120, 2036-2046 (2016). DOI: 10.1021/acs.jpcc.5b09078

  47. G. L. Gutsev, K. G. Belay, C. A. Weatherford, B. R. Ramachandran, L. G. Gutsev, and P. Jana,  “Structure and magnetic properties of polyfluoride Fn clusters (n = 3-29),” Journal of Physical Chemistry A 119, 6483-6492 (2015). DOI: 10.1021/acs.jpca.5b02431

  48. G. L. Gutsev, C. A. Weatherford, B. R. Ramachandran, L. G. Gutsev, W.-J. Zheng, O. C. Thomas, and K. H. Bowen, “Photoelectron spectra and structure of the Mnn  anions (n = 2 – 16),” Journal of Chemical Physics 143, 044306 (2015). DOI: 10.1063/1.4926943

  49. L.G. Gutsev, N. S. Dalal, B. Ramu Ramachandran, C. A. Weatherford, and G. L. Gutsev, “Spectral signatures of (CdSe)16 isomers,” Chemical Physics Letters 636, 121-128 (2015). DOI: 10.1016/j.cplett.2015.07.024

  50. A. S. Hassan, A. Navulla, L. Meda, B. R. Ramachandran, and C. D. Wick, "Molecular Mechanisms for the Lithiation of Ruthenium Oxide (RuO2) Nanoplates as Lithium-Ion Battery Anode Materials: An Experimentally Motivated Computational Study," Journal of Physical Chemistry C, 119, 9705-9713 (2015). DOI: 10.1021/jp5123536

  51. G. L Gutsev, L. E Johnson, K. G. Belay, C. A. Weatherford, L. L. Gutsev; B. R. Ramachandran, “Structure and magnetic properties of FenGd clusters,” European Journal of Physics D 68, 81 (9 pages) (2014). DOI: 10.1140/epjd/e2014-40830-3

  52. G. L Gutsev, L. E Johnson, K. G. Belay, C. A. Weatherford, L. L. Gutsev; B. R. Ramachandran, “Structure and magnetic properties of Fe12X clusters,” Chemical Physics 430, 62-68 (2014). DOI: 10.1016/j.chemphys.2013.12.014

  53. B. R. Ramachandran, S. Waithe, and L. M. Pratt “Correction to: Rearrangement reactions of lithiated oxiranes,” Journal of Organic Chemistry 79, 471-471 (2014). DOI: 10.1021/jo4026397

  54. L. M. Pratt, B. K. Mai, and B. R. Ramachandran, “Correction to: Carbenoid Alkene Insertion Reactions of Oxiranyllithiums” Journal of Organic Chemistry 79, 472-472 (2014). DOI: 10.1021/jo4026572

  55. B. R. Ramachandran, S. Waithe, and L. M. Pratt “Rearrangement reactions of lithiated oxiranes,” Journal of Organic Chemistry 78, 10776-10783 (2013). DOI: 10.1021/jo401763v.

  56. G. L. Gutsev, C. A. Weatherford, K. G. Belay, B. R. Ramachandran, “An all-electron density functional theory study on the structure and properties of the neutral and singly charged M12 and M13 clusters: M=Sc–Zn,”Journal of Chemical Physics 138, 164303 (2013). DOI: 10.1063/1.4799917.

  57. G. L. Gutsev, C. A. Weatherford, P. Jena, B. R. Ramachandran, “Competition between surface chemisorption and cage formation in Fe12O12 clusters,” Chemical Physics Letters 556, 211-216 (2013). DOI: 10.1016/j.cplett.2012.11.054.

  58. B. R. Ramachandran, S. D. Baker, G. Suravajhula, and P. Derosa, “Selective complexation of alkali metal ions using crown ethers derived from calix[4]arenes: A computational investigation of the structural and energetic factors,” Journal of Inclusion Phenomena and Macrocyclic Chemistry 75, 15-195 (2013). DOI: 10.1007/s10847-012-0160-6.

  59. L. M. Pratt, B. K. Mai, and B. R. Ramachandran, “Carbenoid Alkene Insertion Reactions of Oxiranyllithiums” Journal of Organic Chemistry 77, 8605-8614 (2012). DOI: 10.1021/jo301550y.

  60. G. L. Gutsev, C. A. Weatherford, P. Jena, E. Johnson, B. R. Ramachandran, “Structure and Properties of Fen, Fen-, and Fen+ Clusters, n = 7 – 20” Journal of Physical Chemistry A 116, 10218-10228 (2012). DOI: 10.1021/jp300403p.

  61. G. L. Gutsev, C. A. Weatherford, P. Jenna, E. Johnson, and B. R. Ramachandran, “Erratum: Structural Patterns in Carbon Chemisorption on an Icosahedral Iron Cluster,” Journal of Physical Chemistry C 116, 7050-7061 (2012). DOI: 10.1021/jp300403p.

  62. B. Ramachandran and L. M. Pratt, “Computational perspectives on organolithium carbenoids,” in Practical Aspects of Computational Chemistry II: An Overview of the Last Two Decades and Current Trends, Chapter 13, pp. 471-510, Eds. J. Leszczynski, M. K. Shukla, and H. de Rode, Springer, Dordrecht, 2012.

  63. G. L. Gutsev, C. A. Weatherford, P. Jenna, E. Johnson, and B. R. Ramachandran, “Structural Patterns in Carbon Chemisorption on an Icosahedral 2 Iron Cluster,” Journal of Physical Chemistry C 116, 7050-7061 (2012). DOI: 10.1021/jp300403p.  PDF.

  64. B. Ramachandran, Purnima Kharidehal, Lawrence M. Pratt, Stewart Voit, Fabian N. Okeke, and Monique Ewan, “Computational Strategies for Reactions of Aggregated and Solvated Organolithium Carbenoids, Journal of Physical Chemistry A  114, 8423-8433 (2010). DOI: 10.1021/jp104246k. PDF.

  65. L. M. Pratt, T. Phuong, N. V. Nguỹên, and B. Ramachandran, “Halomethyllithium carbenoid cyclopropanation reactions: A computational study of the effects of solvation and aggregation,” Bulletin of the Chemical Society of Japan 82, 1107-1125 (2009).DOI: 10.1246/bcsj.82.1107 PDF.

  66. J. D. Nelson, J. Carpenter, S. A. Napper, and B. Ramachandran, “Innovative Administration Supports Innovative Education,” Proceedings of the 38th ASEE/IEEE Frontiers in Education (FIE) Conference, Saratoga Springs, NY; October 22-25, art. no. 4720387, pp. T2G3-T2G8 (2008). DOI: 10.1109/FIE.2008.4720387 PDF.

  67. M. M. Ghouri, S. Singh, and B. Ramachandran, "Scaled density functional theory correlation functionals,"Journal of Physical Chemistry A (Robert E. Wyatt Festschrift) 111, 10390-10399 (2007). DOI: 10.1021/jp0728353. PDF.

  68. L. Pasumansky, C. J. Collins, L. M. Pratt, N.V. Nguỹên, B. Ramachandran, and B. Singaram, "Solvent and temperature effects on the reduction and amination reactions of electrophiles by lithium dialkylaminoborohydrides, DOI: 10.1021/jo062154o   PDF.

  69. B. Ramachandran, "Scaling dynamical correlation energy from Density Functional Theory correlation functions," Journal of Physical Chemistry A (Donald G. Truhlar Festschrift) 110, 396-403 (2006). DOI: 10.1021/jp050584x. PDF.

  70. L. M. Pratt and B. Ramachandran, "A Computational Study of Oxiranyllithium," Journal of Organic Chemistry 70, 7238-7242 (2005). DOI: 10.1021/jo050887n PDF.

  71. H. F. Ji, Y. Zhang, V. V. Purushotham, S. Kondu, B. Ramachandran, T. Thundat, and D. T. Haynie,  "1,6-Hexanedithiol monolayer as a receptor for specific recognition of alkylmercury," The Analyst, 130,1577-1579 (2005). DOI: 10.1039/b513144hPDF.

  72. L. Pratt, N.V. Nguyen, and B. Ramachandran, "Computational strategies for evaluating barrier heights for gas phase reactions of lithium enolates," Journal of Organic Chemistry 70, 4279-4283 (2005) . DOI: 10.1021/jo0503409. PDF.

  73. T. Xie, J. M. Bowman, J. W. Duff, M. Braunstein, and B. Ramachandran, "Quantum and quasiclassical studies of the O(3P) + HCl --> OH + Cl(2P) reaction using benchmark potential surfaces," Journal of Chemical Physics 122, 014301 (2005). PDF.

  74. T. Xie, J. M. Bowman, K. A. Peterson, and B. Ramachandran, "Quantum Calculations of the Rate Constants for the O(3P) + HCl Reaction on new Ab Initio 3A" and 3A' Surfaces," Journal of Chemical Physics 119, 9601-9608 (2003). PDF
  75.  
  76. B. Ramachandran and K. A. Peterson,  "Potential Energy Surfaces for the 3A" and 3A' Electronic States of the O(3P) + HCl System," Journal of Chemical Physics 119, 9590-9600 (2003). PDF
  77.  
  78. B. Ramachandran, N. Vegesna, and K. A. Peterson, "Effect of Eletron Correlation and Scalar Relativistic Corrections on the Thermochemical and Spectroscopic Properties of HOF," Journal of Physical Chemistry A 107, 7938-7944 (2003). PDF

  79. L. M. Pratt, B. Ramachandran, J. D. Xidos, C. J. Cramer, and D. G. Truhlar, "Structures and Aggregation States of Fluoromethyllithium and Chloromethyllithium Carbenoids in the Gas Phase and in Ethereal Solvent," Journal of Organic Chemistry 67, 7607-7612 (2002). PDF

  80. S. Skokov, S. Zou, J. M. Bowman, T. C. Allison, D. G. Truhlar, Y. Lin, B. Ramachandran, B. C. Garrett, and B. J. Lynch, "Thermal and state-selected rate coefficients for the O(3P) + HCl reaction and new calculations for the barrier height and width," Journal of Physical Chemistry A (Aron Kupperman Festschrift) 105 2298-2307 (2001) PDF

  81. Y. Lin, B. Ramachandran, K. Nobusada, and H. Nakamura, "Quantum-classical correspondence in the O(3P) + HCl and Cl(2P) + OH reactions for total angular momentum J = 0," Journal of Chemical Physics 114, 1549-1558 (2001). PDF

  82. B. Ramachandran, N. Balakrishnan, and A. Dalgarno, "Vibrational-rotational distributions of NO formed from N + O2 reactive collisions," Chemical Physics Letters 332, 562-568 (2000). PDF

  83. K. Nobusada, H. Nakamura, Y. Lin, and B. Ramachandran, "Quantum reaction dynamics of O(3P) + HCl on a new ab initio potential energy surface," Journal of Chemical Physics 113, 1018-1026 (2000). PDF.
  84.  
  85. B. Ramachandran, "Energy disposal in the O(3P) + HCl reaction: Classical dynamics and comparison to experiment ," Journal of Chemical Physics 112, 3680-3688 (2000). PDF

  86. B. Ramachandran, E.A. Schrader III,  J. Senekowitsch, and R. E. Wyatt, "Dynamics of the O(3P) + HCl reaction on the 3A'' electronic state:  A new ab initio potential energy surface, quasi-classical trajectory study, and comparison to experiment ," Journal of Chemical Physics 111, 3862-3873 (1999).  PDF

  87. H. Zhang, B. Ramachandran,  J. Senekowitsch, and R.E. Wyatt, “Determination of the spectroscopic constants and anharmonic forcefields for HOCl and DOCl using Scaled External Correlation,” Journal of Molecular Structure (Theochem) 487, 75 (1999). PDF

  88. T.C. Allison, B. Ramachandran,  J. Senekowitsch, D. G. Truhlar, and R. E. Wyatt, "Variational Transition State Theory Calculations of Thermal Rate Coefficients for the O(3P) + HCl Reaction," Journal of Molecular Structure (Theochem) 454, 307 (1998). PDF

  89. B. Ramachandran, J. Senekowitsch and R.E. Wyatt, "A quasiclassical trajectory study of the reaction O(3P) + HCl (v=2, j=1,6,9) --> OH (v',j') + Cl(2P) on a new potential surface," Chemical Physics Letters 270, 387 (1997). 

  90. B. Ramachandran, J. Senekowitsch and R.E. Wyatt, "A new potential surface for the reaction O(3P) + HCl (X 1S+) --> OH (X 2P) + Cl (2P)," J.Mol. Struct. (Theochem) 388, 57 (1996). 

  91. B. Ramachandran, "Examining the shapes of atomic orbitals using Mathcad," J. Chem. Educ. 72, 1082 (1995). PDF

  92. B. Ramachandran, X. Wu and R.E. Wyatt, "A single arrangement variational method for quantum mechanical reactive scattering," in Toward Teraflop Computing and Other Grand Challenge Applications, Eds. R. Kalia and P. Vashishta, Nova Science, Commack, NY (1995). PDF
  93.  
  94. B. Ramachandran and P.C. Kong, "Three dimensional graphical visualization of one-electron atomic orbitals," J. Chem. Educ. 72, 406 (1995). PDF
  95.   
  96. B. Ramachandran, "MOBY Molecular Modeling on the PC, Version 1.5," software review, J. Chem. Educ. 71, A228 (1994).
  97.  
  98. X. Wu, B. Ramachandran and R.E. Wyatt, "A single arrangement variational method for reactive scattering: total and state-resolved reaction probabilities," Journal of Chemical Physics 101, 9395 (1994). PDF
  99.  
  100. X. Wu, B. Ramachandran and R.E. Wyatt, "A single arrangement variational method for total reaction probabilities," Chemical Physics Letters 214, 118 (1993).
  101.  
  102. B. Ramachandran and K. G. Kay, "The influence of classical resonances on quantum energy levels," Journal of Chemical Physics 99, 3659 (1993). PDF
  103.    
  104. B. Ramachandran, M. D'Mello and R. E. Wyatt, "The Newton Variational Functional for the Log-Derivative Matrix: Use of the Reference Energy Green's Function in an Exchange Problem," Journal of Chemical Physics 93, 8110, (1990). PDF

  105. B. Ramachandran and K. G. Kay, "Semiclassical Expectation Values by Adiabatic Switching: Trapping and Tunneling in the Chaotic Regime," Phys. Rev. A 41, 1757, (1990). PDF

  106. B. Ramachandran and R. E. Wyatt, "The Schwinger and Newton Variational Methods for the Log-Derivative Matrix," Journal of Chemical Physics 91, 1096, (1989). PDF

  107. B. Ramachandran and R. E. Wyatt, "How Variational Principles in Scattering Theory Work," in Supercomputer Algorithms for Reactivity, Dynamics and Kinetics of Small Molecules, NATO ASI Series, Ed. A. Lagana (Kluwer Academic Publishers, Holland, 1989).

  108. B. Ramachandran, T. G. Wei and R. E. Wyatt, "The Role of Basis Set Expansions in the Relative Performanaces of the Schwinger and Newton Variational Principles," Chemical Physics Letters 151, 540 (1988).

  109. B. Ramachandran, T. G. Wei and R. E. Wyatt, "The Relative Performances of the Kohn, Schwinger and Newton Variational Principles in Scattering Theory," Journal of Chemical Physics 89, 6785 (1988). PDF

  110. K. G. Kay and B. Ramachandran, "Classical and Quantum Pseudoergodic Regions of the Henon-Heiles System," Journal of Chemical Physics 88, 5688 (1988). PDF

  111. B. Ramachandran and K. G. Kay, "Local Ergodicity as a Probe for Chaos in Quantum Systems: Application to the Henon- Heiles System," Journal of Chemical Physics 86, 4628 (1987). PDF
  112.   
  113. B. Ramachandran and K. G. Kay, "Semiclassical Ergodic Properties of the Henon-Heiles System," Journal of Chemical Physics 83, 6316 (1985). PDF