CHAPTER 5 LECTURE NOTES
Phases and Solutions

Phase diagrams for two one component systems, CO, and H,O, are shown below.
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The main items to note are the following:
» The lines represent equilibria between two phases.

» The regions “interior” to these lines represent regions where only one phase is
present.

» The triple point is a unique, invariant point for each system where three phases
are simultaneously in equilibrium.

Thermodynamic condition for equilibrium between two phases a and b is G, = Gy,

so that during an equilibrium phase change, AG,, = G, — Gp = 0.

Note that the slope of the line separating the solid from the liqid region for CO;

has a positive slope. This is typical of most substances and is indicative of the fact
that the solid is denser than the liquid (how?).

On the other hand, the slope of the solid-liquid boundary for water is negative,
indicating that the liquid is denser than the solid. This is by far the exception.



The Clapeyron Equation

If we confine ourselves to conditions where two phases, say vapor and liquid, are
in equilibrium, we effectively limit ourselves to a one-dimensional world defined
by the line separating the liquid region from the vapor region. Under those
conditions, the Maxwell relation

(5),-(5), G124

(3.124) can be modified as follows:
dP _ as - Sm,v_Sm,l _ AvapSm (5 8)
dT B av — Vm,v - Vm,l B Avap Vm .
Substituting the definition of entropy change for a phase change, we obtain
dP _ Avpln
dT — TAVu'

This is called the Clapeyron equation.

(5.9)

Similar equations can be written for the solid-vapor boundary (enthalpy of
sublimation!) and the solid-liquid boundary (enthalpy of fusion!). Note that, since
enthalpy is a state function,

The Clausius-Clapeyron Equation:

Eq. (5.9) may be written as
dP _ AvapHm AvapHm AvapHm

dT = (Ve V) * Ve = RT?

where we have assumed that the vapor behaves ideally to get the last equality.
This equation may be rearranged and integrated to give

P (5.11)

u _AvapHm

InP =T+C’ or (5.14)
&>_AvapHm(L L)

ln(Pl =T R \T,"T») (5.16)

The Clausius-Clapeyron equation is applicable to solid-vapor equilibrium as well.
The pressure plotted in the phase diagrams and used in these relationships is the
vapor pressure of the substance under consideration, not the total pressure. Eq.
(5.14) gives the P-T relationship required to plot the lines in the phase diagrams.

Therefore, Eq. (5.14) for the liquid-vapor and the solid-vapor equilibria can be
used to find the triple point for a one-component system.

Examples 5.2, 5.3, Problems 5.1-5.4, 5.7-5.10, 5.12, 5.15, 5.18, 5.20.



The Gibbs Equation:

By definition,
dG = VdP — SdT.

At constant temperature, the second term vanishes and we get
dG = VdP.

For the liquid vapor equilibrium considered earlier, under these circumstances, we
have

dGm,v = dGm,]
or
Vm,vdP = Vm,ldPt,

where the pressure term on the vapor side is the vapor pressure of the substance
while on the liquid side, it is the total pressure acting on the liquid surface. Now,
using ideal gas law for the vapor, we get

BLdP = V,.dP, or

dP _ Vi
p = prdP:
Now consider a situation where, initially, the total pressure acting on a liquid

surface is the total pressure. Let us denote this pressure by P,. The pressure is
then changed by the addition of an inert gas, keeping the temperature fixed, to get

a final total pressure P;,. We wish to find the new value of the equilibrium vapor
pressure P. For this situation, we may integrate this equation above to get

P _ Vm,l
ln(P—V) = 27 (P = Py), (5.23)

where we have assumed that the liquid volume does not change with applied
pressure.

This is called the Gibbs Equation.

Problems 5.5, 5.17



5.4. Ideal Solutions: Raoult’s Law:

Consider a solution formed by two miscible liquids A and B. An ideal solution is
one for which

e Viomn=Va+Vp.
° AHSO]H = O.
o ASysoln = —R(xaln xa + xgln xp).

e AGuson = RT()CAIII xa + xgln XB).

Ideal solutions obey Raoult’s law exactly. To state Raoult’s law, let us denote the
mole fractions in the liquid phase by x and the mole fractions in the vapor phase

by y. Also, we denote the vapor pressure of pure A as Pa* and that of B as Pg*.
Raoult’s law can now be written as

PA :xAPA* and PB :XBPB*.

In other words, the partial pressure of a substance in the vapor phase is determined
by its mole fraction in the liquid phase. Compare this to the Dalton’s law of partial
pressures, which states

PA :yAP and PB :yBP,

where the total pressure is denoted as P. If only A and B are present in the gas
phase above the solution, we have

P =xAPp* + xgPp*.

Since A and B are the only substances present in solution, we may re-write this as
P =xaAPx* + (1 —xa)Pp¥,

which gives the variation of total pressure as a function of xa

Problems 5.19, 5.21, 5.28.



Henry’s Law:

Henry’s Law may be written in terms of molality, molarity or mole fractions as

” 4
PB = kBmB = kB CB = kB XB.

In the limit of infinite dilution, solvents usually follow Raoult’s law and solutes
usually follow Henry’s law.

The form of Henry’s law preferred by the authors of the textbook is:
Pg = kg'xz, (5.28)
where B refers to the component present in small amounts in the solution.

One place where Henry’s law finds useful application is in estimating the
concentration of gases dissolved in a solution at a given partial pressure of the gas.

Example: Problem 5.38

The total pressure above the solution is 750 torr, which consists of the partial
pressure of methane and benzene. In other words,

PZPCH4+PBZ.

This question actually presents a “catch-22” situation. We have no way of

calculating the actual partial pressure of benzene, Pg, (for which we would use
Raoult’s law since benzene is present in large quantities and can be considered the

solvent), without knowing the mole fraction of benzene in the solution, xg,, which
we cannot know until we find the mole fraction of methane in solution. But the
whole purpose of the question is to find the mole fraction of methane in solution!

So, since methane obviously cannot have a high concentration, we assume that xp,
=~ 1 and, therefore, Pg, = Pg,*. Then we have

Pcu, =P—Pj. =750-94.6 = 655.4 tor
Now we can use Henry’s law for methane to get

Pcu, = kep,Xcn,
and solve for the mole fraction of methane.

We should verify that this indeed is a small number so that the assumption made
regarding the partial pressure of benzene is valid.

Problem 5.36.



Non-ideal solutions:
Non-ideal solutions are those that deviate from Raoult’s law.
Positive deviation from Raoult’s law:
P> xaPp* + (1 —xa)Pp*.
Negative deviation from Raoult’s law:
P <xaPa* + (1 —xa)Pp*.

In many solutions, both components show the same type of deviation (positive or
negative) from Raoult’s law so that we have either

Pa > xaPaA* and Pg > xgPp*
or
Pa <xaPa* and P < xgPp*.
However, there are exceptions to this behavior, as seen in Fig. 5.9 (ethanol).

When dealing with non-ideal solutions, it is convenient to define activity of a
component as

P
ClA:Pg.

(5.75)

Obviously, for an ideal solution, Raoult’s Law is obeyed and, therefore, a4 = x 4.
However, for a non-ideal solution, the activity will not be equal to the mole
fraction. In such cases, the activity can be related to the mole fraction through the
activity coefficient ya:

ay
VA=, Ordg=7)YaXy.

Note that the textbook uses the symbol f; for activity coefficient of A. This causes
confusion with fugacity, which is also denoted by f. Therefore, I have chosen to
denote this quantity by the Greek letter y (gamma).

Example 5.8, Problems: 5.34, 5.35.



5.5. Partial Molar Quantities

Partial Molar quantities are required to deal with open systems, i.e., systems that
permit mass transfer between themselves and surroundings.

Consider an open system with #; moles of component 1, n, moles of component 2,

n3 moles of component 3, etc.. We would write the free energy change dG for
such a system as

dG ( oP T’nhnz,mdP+ oT P’nl’nz,de+ ont p,T,,nz,_,_dnl+"'

= VdP — SdT + Gidn, + Gydny + ...

In the second equality, the quantities G, G, etc.. are called partial molar free
energies. Similarly, we may define partial molar volumes, partial molar
enthalpies, internal energies, and entropies:

v, = (ﬂ) H, = (8—H) ; etc..
onyJ) prn, oni ) prn,.

Because of their great importance in the thermodynamics of solutions, we discuss
partial molar volumes and partial molar free energies further.

Partial Molar Volume:

The total volume of a solution of, say, two miscible liquids is given by

V=nVi+nV,. I (5 33)

The units of partial molar volumes are the same as molar volumes. The
relationship between the two, i.e., partial molar volume and the molar volume is a
subtle but important one.

* In the case of ideal solutions, the partial molar volume of each component will
be identical to the molar volume of the pure substance in the absence of the
other component.

» However, in the case of non-ideal solutions, the presence of the second
component has a measurable influence on the molar volume of the first
component and vice versa. Therefore, in general,

Vi+=Viand V, # V3

The standard state for defining partial molar quantities is a 1 molal solution, i.e., a
solution that contains 1 mol of the substance in 1.0 kg of solvent.



Physical Interpretation of partial molar quantities:

It may appear that there is something “not quite right” about the following two
equations:

V=nVi+n> Vz, where

_(or _(or
V= (8111 )p,r,nz’and V2= (8112 j P,T,nl.

Based on what we have seen so far, the first equation should be
dV = Vidn, + V,dn,,which is simply another application of the chain rule in partial
differentiation.

However, Eq. (5.33) can indeed be justified on physical grounds as follows.
Consider a large volume of solution containing ethanol (E) and water (W). We
now add a small amount of water, say, Any moles of water, to this solution. We
would want to express the new volume of the solution as

Vnew =Void+ An WV;V,ma

where V7, 1s the molar volume of pure water. However, this will give us the final
volume only in the case of an ideal solution. In the ethanol-water solution, the
effective molar volumes of both substances are different from their molar volumes
in the absence of the other substance. Designating the actual molar volume of
water in the presence of ethanol as V', the change of volume of the solution is

AV =An w VW,m
Therefore, we get
_ AV
Vg = Ay

The partial molar volume of water, Vy, is defined as the value of the fraction on
the right hand side in the limit of an infinitesimal change in the number of moles
of water. Mathematically, we write
T AV _ AV

VW _Aln/é/lz»/lo AnW - an'
Once we impose the conditions that temperature, pressure and the number of
moles of ethanol, ng, are to be held constant, the derivative on the right hand side
becomes identical to the definition of the partial molar volumes used above and in

Eq. (5.33):
_ (V.
Vw= (anW) TP



An example of the applications of Eq. (5.33):

Consider a 40% by mass ethanol solution of ethanol in water at 25°C. From the
figure of partial molar volumes of ethanol and water in the presence of each other,
estimate the volume of 1000 g of the solution. Compare this to the volume that
would have resulted if the solution was ideal. Density of ethanol = 0.785 g mL™
and pure water = 0.997 g mL™' , at this temperature.

In 1000 g of solution, we have 400 g
ethanol (£) and 600 g water (W).

400 g
- ~ 8.68 mol.
’ "5 = 46.07 g mol”! mo
600 g
- = 33.30 mol.
" =18.02 g mol™ o

uy
[=2]
T

xg=0.207; xw=0.793.

From the figure, we estimate that at
these mole fractions, the partial molar
volumes are

-
rs
T

Partial molar volume of water, V(H,0)/cm® mol™

! ! L I
0.2 0.4 0.6 0.8 1
Mole fraction of ethanol, x(C,HsOH)

Partial molar volume of ethanol, V(C,H,0H)/cm® mol™

o

Ve =55.0 mL mol™!;
Vw=17.5 mL mol™.
Therefore, using Eq. (5.33), we get
V=ngVg+nyVy=868%x55.0+33.30x17.:
=1060 mL.

If the solution was ideal, we would use the molar volumes of the pure substances
to obtain

46.07 g mol™ 18.02 g mol™
0785 gmL1 o030 MOl e L

V' =8.68 mol x

=1111 mL.

Therefore, we see that the non-ideal nature of the solution is reflected in a
contraction of volume by 51 mL.



Another example of applying Eq. (5.33):

Density of a 50% by mass solution of ethanol in water at 25°C is 0.914 g mL ™",
Given that the partial molar volume of water at this composition is 17.4 mL

mol !, what is the partial molar volume of ethanol?

No. of moles of ethanol in 100 g of solution: 50 g/46.07 g mol™' = 1.085 mol.
No. of moles of water in 100 g of solution: 50 g/18.02 g mol™! =2.775 mol.
Now, since V=ngVg+nyVy,we get

VenyV
Vi=—

(100 g/0.914 g mL~" ) ~2.775 mol x 17.4 mLmol
- 1.085 mol
=56.33 mLmol .

A third example of using Eq. (5.33) is provided in Homework Assignment # 6.

Partial molar Free Energy:

Partial molar free energy is commonly refered to as the “chemical potential,” and

denoted by the letter W:
1) =G, = (a_Gj
5 fa 4 on 4 P,T.np
g oG
a ()
'-_8 a 5 ong P,T,ny
&)

The figure shows that the partial molar free
energy changes with composition, just as
partial molar volume.

If we were to plot U as a function of
composition, we would get a plot that is the
exact analog of the plot of partial molar

‘a b
0 Composition, n,

volume we discussed earlier.

If A and B are present in two phases o and [, the phase equilibrium condition is:

G4 =G’y (or u% =) and G§ = G}y (or u§ = ). I
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5.7. Raoult’s Law and Activities

Consider a binary system consisting of a solution and a vapor phase, each
containing components A and B. The equilibrium condition is:

Gvol vap (Or’uvol =u P) and Gvol vap (OrluvBol _/uB )

If the vapor phase behaves ideally, we may write

)

GF = GAmp+nART1n(P ), and G7 = GBV“p+nBRT1n(

Now, at equilibrium, we may write

Py P3
G¥' =G +n RTIn and G¥' = G3 + nzRTn ,or
4 4 ( ) B b (P ) (5.70,5.71)

ws =" +RT1n( )and,u“’l up +RT1n(%).
For the pure liquids in equilibrium with their vapors, we write

o,va, P* o,va P*
wh=u; p+RT1n( )and,uB—,uB p+RT1n( ) (5.72)

From the last two equations, we write (all equations written for component 4 can
also be written for B):

P*
wsy! ,uA—RTln( )—RTln(Pf),or

ws = +RT1H(§ ) (5.73)
A

If the solution behaves ideally (i.e., obeys Raoult’s law), then P4/P*4 = x4.
Therefore, we get

W =u%+RTInx,.

For non-ideal solutions, the ratio P4/P*, is called the activity of 4, a4. In this case,
we write

w' =u*+RTInay.

As P4 approaches P*4, it is clear that the activity approaches unity. This is the
basis for assigning the value of 1 to the activities of all pure substances.

See problem 5.34.
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5.8. Colligative Properties

Let us consider the consequence of dissolving a nonvolatile solute B in a solvent
A. Since the solute cannot be present in the vapor phase, this immediately leads to
a lowering of vapor pressure, because x4 < 1 and, therefore, Py = x4P*4 < P*4.
This lowering of vapor pressure is responsible for both lowering the freezing point
as well as raising the boiling point of the solvent.

Freezing Point Depression:
For the equilibrium between the liquid and solid phases, we require /4 =1£4, or
W'+ RTInx, = u*, from which we get

*,0
S _ s _A uS‘G m
Inx, = ’LLAR#A = f}‘?TA’ , at constant 7 and P.

Differentiating both sides with respect to 7, we get

dhle _ -1 8<AfusGA’m/T) _ Afus]_Im eqeq -
iT ~— R a7 ="pr2 -t the equilibrium temperature.

P
Now we rearrange and integrate both sides, the LHS from a mole fraction of x4 =
1 (pure solvent) to the solvent mole fraction in solution, x4 < 1, and

correspondingly, the RHS from a liquid-solid equilibrium temperature of 7%,
(freezing point of the pure solvent) to 7, the freezing point of the solution. This
yields

AﬁusHm( 1 1 j

Inx,=—"p T:°T) (5.115)
We may re-write this as
Aﬁts]{m T— T;
In(1-x3) = R ( ;T ) (5.116)

We now make two simplifications: for small xz, In(1-xz) = —x5 (see Eq. 5.117) and
T* Ty = T*7. This gives

o AuH, (AT,cj
B — % 9
R sz
which can be further simplified to yield (see the text above Eq. 5.119)
RT?*M
_ A f 4 —
Alr=7. H, ™Me ot ALy =Ky, (5.119, 5.120)

where Kris called the cryoscopic constant of the solvent.

12



Boiling Point Elevation:
By considering the liquid-vapor equilibrium in which the vapor contains only the
component A, we can derive an expression analogous to that obtained above:
RT*M.
ATy =~ mp or AT, = Kymy (5.126)
vapLLm

where K} is called the ebullioscopic constant of the solvent.

The elevation of boiling point is a rather weak effect compared to the depression
of freezing point. Therefore, the latter property is overwhelmingly used for the
practical applications of colligative properties.

Practical Applications:
* Problems 5.39, 5.40, 5.46

» These equations are useful to determine the freezing points or boiling points of
various solutions of nonvolatile solutes.

Problem 5.56

* A somewhat “liberal” interpretation of Eq. (5.115) or (5.116) can be used to
calculate the solubility of various solutes at temperature 7 in a solvent whose
enthalpy of fusion and freezing point are known.

Problem 5.48

» The “simplified” forms are also useful to determine the molar masses of
unknown solutes using Eq. (5.122).

Problems 5.52, 5.55

Colligative properties depend on number of “particles” in solution rather than
actual “concentration.” For instance, a 1 m solution of NaCl leads to a 2 m

solution of ions (Na" and CI"). Such a solution, therefore, will yield twice the

expected ATy This effect must be taken into account when dealing with ionic
substances (See problem 5.26).
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