
CHAPTER 4 LECTURE NOTES

Chemical Equilibrium Involving Ideal Gases (Replaces Sections 4.1):

Consider a reaction of the type 

nAA(g) + nBB(g) � nCC(g) + nDD(g),

where A, B, C, and D all behave ideally.  During the reaction, the partial pressure
of each gas changes.  The resulting free energy change for each gas can be
expressed as

�GA = nART ln�
�
�

PA,2
PA,1

�
�
� ,

�GB = nBRT ln�
�
�

PB,2
PB,1

�
�
� , and so on.

If we assume that the reaction starts with each gas at the standard pressure,
denoted as P°, we may write

GA = GA
� + nART ln��

PA
P�

�
� ,

GB = GB
� + nBRT ln��

PB
P�

�
� , and so on.

It is important to remember that the free energies in the expressions above are
NOT molar quantities, i.e., we need to keep in mind that GA = nAGm,A, G°A =
nAG°m,A, etc.. Now, the free energy change for the reaction may be written as

�rG = �rG� + RT ln�
�
	

(PC/P� )nC (PD/P� )nD

(PA/P� )nA(PB/P� )nB


�
�,

where 

∆rG = (GC + GD) � (GA + GB) 

= (nCGm,C + nDGm,D) � (nAGm,A + nBGm,B),

and ∆rG° is similarly defined.
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Now, at equilibrium, ∆rG = 0 and so, we get

�rG� = −RT ln�
�
	

(PC/P� )nC (PD/P� )nD

(PA/P� )nA(PB/P� )nB


�
�

eq
.

The partial pressures that enter into this expression are the values measured at
equilibrium and, therefore, is a constant at a given temperature. Note that, because
of the division of each pressure term by the standard pressure, the quantity within
the square brackets is dimensionless.

In other words,

�rG� = −RT ln KP
� , or

KP
� = exp��−�rG�/(RT) 
�.

This is the thermodynamically correct definition of the equilibrium constant with
respect to pressure.  Note that, because of the division of each pressure term by the
standard pressure, this is a dimensionless quantity.

For real gases, the partial pressures must be replaced by the partial fugacities.

The equilibrium constant can also be expressed in terms of concentrations by
substituting PA = nART/V, etc., and recognizing that nA/V = [A], etc., to get

KP
� = KC��

RT
P�

�
�

nC+nD−nA−nB
, where

KC = [C]nC [D]nD

[A]nA[B]nB .

Also, by recalling that PA = xAP, where xA is the mole fraction of A and P is the
total pressure at equilibrium, we can express the equilibrium constant in terms of
mole-fractions Kx:

KP
� = Kx ��

P
P�

�
�

nC+nD−nA−nB
, where

Kx =
xC

nC xD
nD

xA
nAxB

nB .
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Chemical Equilibria in Solution:

Consider the aqueous reaction

nPP(aq) + nQQ(aq) � nRR(aq) + nSS(aq).

If the standard state is taken to be a concentration of 1 mol dm�3 of solution (i.e., a
1 molar solution), the equilibrium constant used is KC, defined as follows:

KC
� =

(cR/c�)nR(cS/c�)nS

(cP/c�)nP(cQ/c�)nQ ,

where the standard concentration, c° = 1 mol dm�3, is included only to ensure that
KC is dimensionless.

If the standard state is taken to be 1 mol kg�1 of solvent (i.e., a 1 molal
solution), a more accurate representation is possible in terms of �activities.�
Activities are similar to fugacities in that their purpose is to make sure that the free
energy calculated for nonideal solutions yield the correct result without changing
the general form of the equation.  Activities are denoted by the letter a, and is
commonly expressed in terms of activity coefficients γ which, when multiplied by
the molality of the species, yields the activity, i.e., a  = γm.

Ka
� =

aR
nRaS

nS

aP
nPaQ

nQ =
�R

nR�S
nS

�P
nP�Q

nQ �

mR
nRmS

nS

mP
nPmQ

nQ .

It is generally understood that in these equations, the units of the concentrations or
activities are cancelled by a term-by-term division of the standard concentration.
In order to keep the notation simple, we refrain from explicitly showing these
terms as we have done in the case of KC above.

Heterogeneous equilibrium:

The activity of pure solids and liquids is accepted to be exactly equal to 1.

Examples: 4.1 � 4.4,

Problems: 4.1 � 4.5, 4.7 � 4.12, 4.15, 4.16, 4.17, 4.19 � 4.21, 4.24, 4.29
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Le Chatelier Principle:

If a system in dynamic equilibrium is disturbed, the system will adjust itself
in such a way as to counteract, as far as possible, the effect of that change.

Types of disturbances to chemical equilibria we will consider are: (a)
change in volume, (b) change in pressure, (c) change in temperature, (d) change in
concentration or partial pressure.

(a) change in volume:

Consider the reaction AB(aq) � A+(aq) + B�(aq).  The equilibrium constant
KC (ignoring the standard concentration terms for simplicity) is given by:

KC = cA+ � cB−

cAB =
(nA+ /V) � (nB− /V)

(nAB/V) = nA+ � nB−

nAB �
1
V .

So, if the number of moles of each species remained the same, as the system is
diluted, the equilibrium constant decreases.  Since this cannot happen (KC is a
constant at a given temperature), the number of moles of A+(aq) and B�(aq) must
increase with increasing volume.

(b) change in pressure:

Consider the reaction N2(g) + 3H2(g) � 2NH3(g).  Similar arguments as
above can be made for KP as pressure is changed.  However, it is sufficient to note
that there are 4 moles of gases on the reactant side and only two moles of gases on
the product side.  When pressure is increased holding temperature constant, the
equilibrium shifts in the direction of the products so that the volume shrinks.
When pressure is decreased, the equilibrium shifts in the direction of the reactants
so that volume is increased.

(c)  change in temperature:

If a reaction is exothermic in the forward direction, a decrease in
temperature drives the reaction forward to counteract the decrease in temperature.
An increase in temperature will drive the reaction in the reverse direction since the
reverse reaction will be endothermic.

(d)  change in concentration or partial pressure:

Adding reactants or removing products drives the equilibrium towards
products, removing reactants or adding products drives the equilibrium towards
reactants.
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Temperature Dependence of Equilibrium Constants

From Chapter 4, we have

(4.69)�
�
�

�T
�
�
�G�

T
�
�


� P

= −�H�

T2 .

Since substituting for ∆G°, we get�G� = −RT ln KP
� ,

(4.71)�
�
�

�T ln KP
� �
� P

�
d

dT ln KP
� = �H�

RT2 .

On rearranging and integrating, we get

(4.75)ln KP
� = −�H�

RT + const.

which implies that when ln(K°P) is plotted as a function of 1/T, the slope will be
equal to �∆H°/R.  However, we also know that ∆G° = ∆H° � T∆S°.  Therefore, we
get

(4.76)ln KP
� = −�G�

RT = −�H�

RT + �S�

R .

Comparing Eqs. (4.75) and (4.76), we see that if ∆H° is independent of
temperature, the intercept of the line will be equal to the entropy change for the
process.

It is also possible to show that

�
�
�

�T ln KC
� �
� P

�
d

dT ln KC
� = �U�

RT2 .

Problems 4.32, 4.34
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