
CHAPTER 3 LECTURE NOTES
3.1. The Carnot Cycle

Consider the following reversible cyclic
process involving one mole of an ideal gas:

(a) Isothermal expansion from (P1,V1,Th) to
(P2,V2,Th),

(b) Adiabatic expansion from (P2,V2,Th) to
(P3,V3,Tc),

(c) Isothermal compression from (P3,V3,Tc)
to (P4,V4,Tc),

(d) Adiabatic compression from (P4,V4,Tc)
back to (P1,V1,Th).

Table 3.1 provides a summary of the changes
in ∆U, qrev, and wrev during this process.

During the expansion phase of the cycle, the system absorbs an amount of heat
equal to

 qA�C = RTh ln�
�

V2
V1

�
�

+ 0,

and performs an amount of work equal to

 wA�C = RTh ln�
�

V1
V2

�
�

+ CV,m (Tc − Th )

During the compression phase, the system gives out an amount of heat equal to

qC�A = RTc ln�
�

V4
V3

�
�

+ 0,

and the surroundings perform an amount of work on the system equal to

wC�A = RTc ln�
�

V3
V4

�
�

+ CV,m(Th − Tc )

Using the equation derived for adiabats, we can show (see Eq. 3.15) that

(3.16)V4
V3

= V1
V2

.

Therefore, for the cyclic process, we have:
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net heat =  (3.18)qrev = R(Th − Tc) ln�
�

V2
V1

�
�

Since Th > Tc and V2 > V1 , qrev > 0.  Therefore, heat is absorbed at the higher
temperature during each cycle.

net work = (3.19)wrev = R(Th − Tc) ln�
�

V1
V2

�
�

Since Th > Tc and V2 > V1 , wrev < 0.  Therefore, work is done by the system during
each cycle.
The Carnot Cycle, therefore, is a mechanism whereby some heat from the high
temperature heat source is transferred to a low temperature heat sink and in the
process, some work is done by the system.  The efficiency of an engine is the ratio
of the work done to the amount of heat absorbed, i.e.,

(3.20)� = wrev
qA�B =

R(Th − Tc) ln(V2/V1 )
RTh ln(V2/V1)

where, in order to get physically meaningful values for efficiency, we have made
the numerical value of wrev positive.  This yields

(3.21)� = Th − Tc
Th

= 1 − Tc
Th

Therefore, the efficiency depends only on the temperatures of the heat source and
the heat sink and has no dependence on the working fluid of the engine .
Example 3.1, Problems 3.1�3.5
Entropy:
We may also write the right hand side of Eq. (3.20) as follows:

 � =
qA�B + qC�D

qA�B =
qh + qc

qh .

This gives  i,e.,  (3.28)� = 1 +
qc
qh = 1 − Tc

Th
,

qc
qh = − Tc

Th
or

qh
Th

+
qc
Tc

= 0

This last relationship suggests that q/T is a state property, adding up to zero for the
whole cyclic process.  This property is called entropy change of the system, and
is formally defined as

dS =
dqrev

T .

Reading Assignment: Sections 3.2 (Clausius statement of the second law), 3.3.
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3.4. Calculation of Entropy Changes
The Clausius statement requires that the entropy of the Universe increase during
every actual (i.e., irreversible) process. Entropy change of the system, dS (or ∆S) is
a state property, independent of the path taken by the process.  On the other hand,
entropy change of the surroundings, dSsurr (or ∆Ssurr) explicitly depends on the
path.  We need both of these quantities in order to determine the entropy change of
the Universe during a process:

dSuniv = dS + dSsurr or �Suniv = �S + �Ssurr.
Therefore, in calculations of entropy changes for real processes, we take the
following strategy:
(a) Entropy change of the system is always calculated using a reversible path,

which we may have to construct, connecting the initial and final states.
(b) Entropy change of the surroundings is always calculated using the actual

process in consideration.
Types of processes:

1. Phase changes: �Spc =
�pcH
Tpc

.

Problems: 3.7, 3.17, 3.25, 3.30, 3.31, 3.35
2. Mixing : �Smix = −R� i xi ln xi.

Problems: 3.12, 3.13
3. Heating or cooling at constant pressure or constant volume (one mole):

�S = �T1

T2 CP,m
T dT or �T1

T2 CV,m
T dT.

Example 3.2, Problems: 3.11, 3.17, 3.23, 3.25, 3.30, 3.31, 3.33, 3.35
4. Isothermal expansion/compression (ideal gas):

�S = �V1

V2 P
T dV = nR ln�

�
V2
V1

�
�

= nR ln�
�

P1
P2

�
�

Problems: 3.16, 3.17, 3.20, 3.24, 3.33
5. Entropy change during an adiabatic process = 0 by definition!
6. Entropy of reaction/formation:

�
products

niSf,i
o − �

reactants
njSf,j

o

The absolute entropies S° appearing in this equation are obtained using the
Third Law of Thermodynamics.

Problems: 3.10, 3.11, 3.15
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The Third Law of Thermodynamics

The entropy of a pure, perfectly crystalline solid at absolute zero
temperature is zero.

In other words, for a perfectly crystalline substance,

T�0
Lim S =

T�0
Lim

qrev
T = 0

This gives us a way to calculate the absolute entropy S (as opposed to entropy
chages, ∆S) for a pure substance at any temperature.  So, for example, if we
wished to find the absolute entropy of water at 800 K, we would write (formally):

S800 = �0

273.15 CP,H2O(s)

T dT + �fusH
273.15 + �273.15

373.15 CP,H2O(l)

T dT +
�vapH
273.15

+ �373.15

800 CP,H2O(g)

T dT.

In practice, the first term cannot be evaluated. So, calculations of absolute entropy
depend on the experimentally determined absolute entropy at some low
temperature.  If this value is given, say S at 10 K, denoted as S10, the first term can
be replaced by

�0

273.15 CP,H2O(s)

T dT = S10 + �10

273.15 CP,H2O(s)

T dT.

Depending on the problem at hand, some or all of the terms in these expressions
may have to be used.

Problems: 3.36, 3.47
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3.6.  Conditions for Equilibrium
Problem 3.25:

The entropy change for the system:

∆S = ∆S1 + ∆S2 + ∆S3 = �21.63 J K�1mol�1

Entropy change for the surroundings:

∆Ssurr =  21.87 J K�1mol�15907.2 J mol−1

270.15 K =

Therefore, ∆Suniv = +0.24 J  K�1 mol�1.

Calculating entropy changes of the surroundings is not always possible.
Therefore, it is desirable to have a criterion for spontaneity that depends ONLY on
system variables.

5

H O (l)2 H O (s)2

H O (s)2H O (l)2

�3°C

0°C

�3°C

0°C

∆S1 = 0.83 J K   mol�1 �1

∆S = �22.04 J K   mol�1 �1

∆ S = �0.42 J K   mol�1 �1

∆S = 21.87 J K   mol
�1 �1

2

3

surr

q = �5907.2 J

q  = 225.9 J  1

q  = �6020 J  2

q  = �113.1 J  3



Constant Pressure and Temperature Processes:
In Problem 3.25, the actual enthalpy change during the process is �5907.2 J mol�1.
This is the heat lost from the system and gained by the surroundings.
Therefore, in this case, we have

∆H � T∆S = �5907.2 J mol�1 � 270.15 K(�21.63 J K�1mol�1)
 = �63.86 J mol�1.

The quantity H � TS is defined as Gibbs Free Energy, G, which is always negative
for a spontaneous (irreversible) process taking place at constant temperature and
pressure.
Thus, by definition, G = H � TS,

dG = dH � TdS at constant temperature
dG < 0 for irreversible processes at constant T and P.
dG = 0 for reversible (equilibrium) processes at constant T & P.

Constant Volume and Temperature Processes:
For constant volume, isothermal processes, it can be shown that a similar state
property can be defined as A = U � TS,

dA = dU � TdS at constant temperature
dA < 0 for irreversible processes at constant T and V.
dA = 0 for reversible (equilibrium) processes at constant T & V.

The state property A is called the Helmhotz Free Energy.
Reactions:

Gibbs energies of formation can be used in the same way as enthalpies of
formation to determine ∆G of reactions.
Isothermal Reversible Expansion/Compression of an Ideal Gas:

wrev = nRT ln�
�

V1
V2

�
�

= nRT ln�
�

P2
P1

�
�

.

qrev = T�S = −wrev, since �U = 0.
�H = 0 (ideal gas).

Therefore, for an isothermal reveresible expansion/compression of an ideal gas,

�G = �H − T�S = wrev = nRT ln�
�

P2
P1

�
�

Problems: 3.37, 3.38, 3.40, 3.41, 3.42, 3.43, 3.48 � 3.52, 3.54, 3.55.
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3.8. Maxwell�s Relations:
Maxwell�s relations are derived using a very predictable and systematic four step
procedure:

Step 1:  Derive the �parent expression� for the state property of interest:

Eg. dU = dq + dw = TdS � PdV.

Step 2:  Express the same differential using the chain rule of partial
differentiation:

dU = �
�
�U
�S

�
� V

dS + �
�
�U
�V

�
� S

dV.

Step 3:  Equate terms containing the same differential between these two
equations to get

�
�
�U
�S

�
� V

= T and �
�
�U
�V

�
� S

= −P

Step 4:  Use Euler�s theorem for exact differentials (the order of differentiation is
immaterial)

which gives�
�
�

�V
�
�
�U
�S

�
� V

�
� S

= �
�
	
�

�S
�
�
�U
�V

�
� S

�
�



V
,

�
�
�T
�V

�
� S

= −��
�P
�S

�
� V

.

This last equation is one of the four Maxwell�s Relations.  Similar relations can
be derived from dH, dA, and dG.  These give (Steps 3 and 4) the relations shown
on p. 128 (Eq. 3.116 � 3.119) and p. 129 (Eq. 3.122 � 3.125).

Problem: 3.63.
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Thermodynamic Equations of State:
Consider

(3.128)�
�
�U
�V

�
� T

= −P + T��
�P
�T

�
� V

We define two quantities of great importance and usefulness:

Cubic expansion coefficient:

(3.139)� = 1
V
�
�
�V
�T

�
� P

This is a measure of the increase in volume with an increase in temperature, and
may also be called thermal expansivity or thermal expansion coefficient.

Isothermal compressibility:

� = − 1
V
�
�
�V
�P

�
� T

The negative sign indicates that volume decreases as pressure is increased,which
is the behavior observed for nearly all substances including solids and liquids.

Using these two definitions, and using the relationship that

(C.11)�
�
�P
�V

�
� T

�
�
�V
�T

�
� P

�
�
�T
�P

�
� V

= −1,

we can re-write the thermodynamic equation of state Eq. (3.128) as
�
�
�U
�V

�
� T

= �T − �P
� ,

which is a completely general expression applicable to all substances.

Problems:  3.62 � 3.64.
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3.9. Gibbs Helmholz Equation
See p. 135 of Text.

Connection to experiments 1 and 5 in the P. Chem. Lab:

Recall (from Chem 102) that ∆G° = �RT ln Keq.
Substitute for ∆G°/T in Eq. (3.168) to get

�
�
�

�T
�
�
�G�

T
�
�
�
�P

= �

�T
�
�−R ln Keq �� = −�H�

T2 , or

�

�T ln Keq = �H�

RT2 .

Rearranging, we get

d ln Keq = �H�

RT2 dT,

which, when integrated, yields

ln Keq = −�H�

RT + c

In Expt. 1, the equilibrium is a heterogeneous equilibrium between a liquid and its
vapor.
In Expt. 5, the equilibrium is a homogeneous equilibrium between acetic acid and
its dissociation products.

Problems: 3.42, 3.45, 3.46.
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Fugacity:

Since, from Eq. (3.115), dG = VdP � SdT, for an isothermal process, we have

 �G = �P1

P2 VdP.

For ideal gas, we can substitute for V and obtain

�G = nRT ln�
�

P2
P1

�
�

,

or with reference to a standard pressure, P°, we may write

G − G� = nRT ln��
P
P�

�
� , or

Gm = Gm
� + RT ln��

P
P�

�
� .

Now, consider a real gas that obeys the equation of state

(P + a)(Vm − b) = RT,

which would give

Gm = Gm
� + RT ln��

P + a
P� + a

�
� − b(P − P�)

More complicated equations of state will give rise to more complicated
expressions for ∆G.

In order to preserve the simplicity of the expression for ∆G even for real gases, the
concept of fugacity, f, was introduced by G.N. Lewis so that

Gm = Gm
� + RT ln��

f
P�

�
�

with the condition that

P�0
Lim f

P = 1
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A working expression to calculate fugacity:

For a constant temperature process, dGm = VmdP, or

(3.154)�Gm = G2,m − G1,m = �P1

P2 VmdP.

Let us add and subtract RT/P to the right hand side:

(3.155, 3.156)
�Gm = �P1

P2 �
�

RT
P + �

�Vm − RT
P

�
�
�
�dP

= RT ln�
�

P2
P1

�
�

+ �P1

P2 �
�Vm − RT

P
�
� dP

Now, by definition, for all gases, ∆Gm = RTln(f2/f1).  Therefore, we get

(3.158)RT ln f2/P2
f1/P1

= �P1

P2 �
�Vm − RT

P
�
� dP

We now set P1 = 0 (recall that f = P as P → 0), f2 = f and P2 = P, where P is the
pressure of interest, to get

RT ln��
f
P
�
� = �0

P�
�Vm − RT

P
�
� dP

The right hand side can be evaluated if Vm can be conveniently expressed as a
function of R, T and P.  However, this is often very difficult (consider the van der
Waals equation of state, for example).  An alternative is to express Vm in terms of
the compressibility factor Z, 

Vm = ZRT/P, 

to get

RT ln��
f
P
�
� = �0

P�
�

ZRT
P − RT

P
�
� dP, or

ln��
f
P
�
� = �0

P�
�

Z − 1
P

�
� dP.

The last expression can be conventiently and fairly accurately evaluated in most
cases using Virial expansions.

Problems: 3.71, 3.72.
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