Physical Chemistry

Homework Assignment # 4 Due: Monday, October 11, 2004

1. The following data are given for chloroform (CHCl₃). Calculate its absolute entropy at 1 bar and 500 K.

S ^o at 10 K (J K ⁻¹ mol ⁻¹)	1.142
$C_{P,m}$ of solid phase (J K ⁻¹ mol ⁻¹)	52.34
$\Delta_{fus}H^{\circ}$ (kJ K ⁻¹ mol ⁻¹)	8.8 at 210.2 K
$C_{P,m}$ of liquid phase (J K ⁻¹ mol ⁻¹)	114.25
$\Delta_{vap}H^{\circ}$ (kJ K ⁻¹ mol ⁻¹)	31.4 at 334.3 K
$C_{P,m}$ of gas phase (J K ⁻¹ mol ⁻¹)	$44.24 + 114.67 \times 10^{-3} T - 5.228 \times 10^{5} / T^{2}$

2. The area of a rectangle may be considered a function of the breadth, b, and the length l, since a = bl. Then, b and l are considered independent variables and a is the dependent variable. Other possible dependent variables are the perimeter p = 2b + 2l, and the diagonal, $d = \sqrt{b^2 + l^2}$. Evaluate the following partial derivatives in terms of b and l, or obtain a numerical answer:

$$(i) \left(\frac{\partial a}{\partial l}\right)_b, (ii) \left(\frac{\partial p}{\partial l}\right)_b, (iii) \left(\frac{\partial l}{\partial b}\right)_d, (iv) \left(\frac{\partial l}{\partial b}\right)_p.$$

3. Starting from Eq. (3-126), and making use of Eq. (C-11), show that

$$\left(\frac{\partial U}{\partial V}\right)_{T} = T\left(\frac{\alpha}{\kappa}\right) - P,$$

where α and κ are, respectively, the cubic expansion coefficient and the isothermal compressibility.

4. A gas obeys the equation of state

$$\left(P - \frac{a}{V_m}\right)V_m = RT.$$

Evaluate the fugacity of the gas at 500 K and 20 bar, if a = 0.786 L bar.