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1 First Law of Thermodynamics

The first law crops up everywhere you turn. Always remember it and, even more important, remember
to use it!

∆U = q +w, (1)

where ∆U is the internal energy, q is the heat, and w is work.

In our convention, if q is a positive number, it means the heat is being absorbed by the system (heat
gain) and if it is a negative number, heat is being given out (heat loss). Also, in the same convention,
if w is a positive number, the work is being done on the system (“work gain”), and if it is a negative
number, the work is being done by the system (“work loss”).

Internal energy of a system is a state property, i.e., it depends only on the initial and final states of the
process and not on the actual path taken. The heat q and work w, on the other hand, do depend explicitly
on the path taken from the initial to the final state. It is fascinating that two path dependent quantities
can add up to give rise to a quantity that is independent of the path.

1.1 Internal Energy and Enthalpy

By definition,
dU = CV dT. (2)

IfCV is a constant independent of temperature (as in the case of an ideal gas), we may write∆U = CV∆T .
It follows that for an isothermal process involving an ideal gas, ∆U = 0.

Another state property of interest to us is the enthalpy of the system, defined as

H = U +PV. (3)

The change in enthalpy for an ideal gas undergoing a process can be written as

∆H = ∆U +∆(PV ) = ∆U +∆(nRT ) . (4)

From Eqs. (2) and (3), a change in enthalpy can also be defined as

dH = CP dT, (5)

using the relationship
CP − CV = nR. (6)

Remember also that for an ideal gas, CV,m = 3

2
R, which means that CP ,m = CV,m + R = 5

2
R where

the subscript ‘m’ denotes a molar quantity.
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1.2 Work

For our purposes, the most common form of work is that of the pressure-volume type. For example,
expansion of a gas against an external pressure, or a phase change accompanied by a change in volume.
This type of work is defined as

dw = −PdV (7)

where the negative sign is inserted to conform the definition to the convention described below Eq. (1).
If the external pressure, against which the work is done, is a constant, we can write

w =
∫
dw = −

Vf∫
Vi

PextdV = −Pext(Vf − Vi). (8)

If the external pressure changes continuously with the expansion, as in the case of a reversible process,
we must express P in terms of the other two variables of a gas, namely, V and T . An equation of state
is required for this. For example, for an ideal gas undergoing an isothermal process, we write

w = −

Vf∫
Vi

nRT

V
dV = −nRT ln

(
Vf

Vi

)
= nRT ln

(
Pf

Pi

)
. (9)

On the other hand, if the gas obeyed, say, the van der Waals equation of state, we would get

P =
nRT

V − nb
−

n
2a

V 2
,

which, when inserted into the integral for calculating w, gives

w = −

Vf∫
Vi

(
nRT

V − b
−

n
2
a

V 2

)
dV = −nRT ln

(
Vf − nb

Vi − nb

)
− n

2
a

(
1

Vf

−

1

Vi

)
. (10)

1.3 Heat

There are two basic ways to find the amount of heat involved in a certain process. One is to check
whether the process is at constant volume or constant pressure, and if no mechanical work is done. If so,

dqV = nCV,mdT (constant volume, w = 0.) = dU (11)

dqP = nCP,mdT (constant pressure, w = 0.) = dH

The other method, which has to be used when w �= 0, is to find ∆U and w for the process and then use
the first law of thermodynamics.

1.4 Enthalpy changes

The quantity CP,m is a temperature-dependent quantity for most real (i.e., nonideal) gases and a number
of liquids and solids. It is usually expressed in the form

CP,m = d+ eT + fT−2, (12)
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where the constants a, b and c have been tabulated for most substances. Finding enthalpy change using
this expression, of course, involves the following integral:

∆Hm =

Tf∫

Ti

(d+ eT + fT−2)dT (13)

= d(Tf − Ti) +
e

2
(T 2

f − T 2

i )− f

(
1

Tf
−

1

Ti

)

This can be used to find the enthalpy change for a process at a given temperature T2 if we already
know the value of the enthalpy change at another temperature T1:

∆Hm,T2 = ∆Hm,T1 + d(T2 − T1) +
e

2
(T 2

2 − T 2

1 )− f

(
1

T2
−

1

T1

)
. (14)

1.5 Enthalpy of a reaction

As you have learned in Freshman Chemistry, the standard enthalpy of a reaction can be found from the
enthalpies of formation of the reactants and products, as in the reaction

nAA+ nBB → nCC + nDD (15)

∆H
◦

rxn =

(
nC∆H

◦

f,C + nD∆H
◦

f,D

)
−

(
nA∆H

◦

f,A + nB∆H
◦

f,B

)

where the superscript “◦” signifies that the reactants and products are all in their standard states. The
enthalpy of a reaction at a temperature other than the standard temperature T ◦ (usually 298 K) can be
found by using Eq. (14) to find the enthalpies of formation of all the reactants and products at the desired
temperature, and then using a relationship similar to that in Eq. (15). Otherwise, we could define the
changes in the a, b, c parameters appearing in the CP of the reactants and products due to the reaction, as

∆d = (nCdC + nDdD)− (nAdA + nBdB) (16)

∆e = (nCeC + nDeD)− (nAeA + nBeB)

∆f = (nCfC + nDfD)− (nAfA + nBfB)

and then use these quantities to define the enthalpy of reaction at the new temperature T , ∆H(T )
rxn:

∆H(T )
rxn = ∆H◦

rxn +∆d(T − T ◦) +
∆e

2
(T 2

− T ◦2)−∆f

(
1

T
−

1

T ◦

)
. (17)

1.6 Relation between enthalpy and internal energy

The enthalpy for a reaction in which gases are involved can be related to the internal energy change for
the reaction simply by using Eq. (4) and substituting for the term PV appropriately. For example, taking
the case of the reaction above (assuming that A,B,C, and D are all gases) and using the ideal gas law,

∆H = ∆U +∆(PV ) = ∆U +∆(nRT ).

If the reaction takes place at a constant temperature, the only quantity that can change during the reaction
is the number of moles of gases. Therefore, we write

∆H = ∆U +∆ngRT, (18)
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where ∆ng = (nC + nD) − (nA + nB). If any one of these species is not a gas, that species will have
to be dropped from consideration. So, for example,

3H2(g) + N2(g) → 2NH3(g); ∆ng = 2− (1 + 3) = −2.

CH4(g) +
3

2
O2(g) → CO2(g) + 2H2O(l); ∆ng = 1− (1 + 3

2
) = −3

2
.

In the second case, the combustion of methane, the water formed is in the liquid state and, therefore, the
number of moles of water is not taken into consideration (obviously, the ideal gas law cannot be applied
to a liquid).

2 Second Law of Thermodynamics

One of the many ways of stating the second law of thermodynamics is that it is impossible to transfer
heat from a cold body to a hot body without performing work on the system. The concept of entropy, S,
follows from the second law. Any change in which the entropy of the universe (system+surroundings)
increases is a spontaneous or irreversible process. All natural processes that occur over a finite amount
of time are irreversible. In order to find the entropy change of the universe ∆Suniv during a process, we
need to find the entropy change of the system ∆S and the entropy change of the thermal surroundings
∆Ssurr during the process.

2.1 Entropy change of the system

It turns out that the entropy change of the system, ∆S, is a state property, depending only on the initial
and final states. Therefore, even if we do not know or cannot replicate the actual path the system took in
order to get to the final state from a given initial state, we can always design any path we wish to connect
the two and find ∆S along that path. It also turns out that ∆S can only be found along reversible paths.
Therefore, we start with a definition of ∆S and look for ways to find it. The definition is

dS =
dqrev

T
, (19)

where the subscript “rev” on dq signifies that this is the heat absorbed (or evolved) during a reversible
process. Since the entropy change for the system is a state property, and it is by definition, based on
dqrev , we must always evaluate dS using a reversible path that connects the initial and final states,
regardless of the nature of the actual process! There are three types of processes we wish to consider:
(1) a phase change under conditions such that the two phases are in equilibrium, (2) a reversible volume
(or pressure) change for ideal gas, and (3) a reversible temperature change at constant volume or constant
pressure.

2.1.1 Equilibrium Phase change

All phase changes occur at a fixed temperature and are accompanied by an enthalpy change, such as
enthalpy of fusion, enthalpy of vaporization, enthalpy of sublimation. The entropy change for the system
undergoing a phase change is defined as

∆S =
n∆Hm,pc

Tpc
. (20)

If the actual process involves a phase change under conditions where the two phases are not in equilibrium
(eg., freezing of water at -10◦C), a reversible path must be constructed whereby the two phases are brought
into equilibrium before the equation above can be used.
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2.1.2 Reversible Volume (or Pressure) change

Consider an isothermal reversible expansion of an ideal gas. We already know that dU = 0 for this
process. Therefore, dq = −dw = PdV . Therefore,

dS =
PdV

T
,

and

∆S =

Sf∫

Si

dS =

Vf∫

Vi

P

T
dV.

Substituting for P using the ideal gas law, and integrating, we get

∆S = nR ln

(
Vf

Vi

)
= nR ln

(
Pi

Pf

)
. (21)

2.1.3 Reversible Temperature change

Let us consider a constant volume process. Since the volume is constant, no work is done and,
therefore, dU = dq, or

dS =
nCV,mdT

T
,

which, if we assume that CV is a constant independent of temperature, leads to

∆S = nCV,m

Tf∫
Ti

dT

T
= nCV,m ln

(
Tf

Ti

)
. (22)

Similarly, for a constant pressure process, dH = dq, and a similar analysis leads to

∆S = nCP,m

Tf∫
Ti

dT

T
= nCP,m ln

(
Tf

Ti

)
. (23)

Actual processes may not fall into any of these categories. However, we can always design paths
connecting the initial and final states where a combination of these three types of processes are used, and
we now have equations to calculate ∆S for each of them. By combining the last two processes, we can
write general equations for processes involving gases, as

∆S = nR ln

(
Vf

Vi

)
+ nCV,m ln

(
Tf

Ti

)
, (24)

∆S = nR ln

(
Pi

Pf

)
+ nCP,m ln

(
Tf

Ti

)
.

Note that if volumes appear in the first term, the second term must have a CV,m in it, and if the first term
has pressures, the second term must have a CP,m.
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2.2 Entropy change of the surroundings

We must always use information about the actual process to find the entropy change of the thermal
surroundings. If sufficient information is not provided about the surroundings, then this quantity cannot
be calculated. This is a weakness of the entropy criterion for spontaneity. The entropy change of the
surroundings are defined as

∆Ssurr =
−qact
Tsurr

(25)

where the quantity qact is the heat absorbed or evolved from the system during the actual process (as
opposed to the reversible path we have constructed between the initial and final states). The negative
sign in front of qact is inserted only to comply with our convention of considering a positive value of
qact as heat absorbed by the system during the actual process (which, amazingly enough, is irrelevant
for calculating ∆S). From the point of view of the surroundings, when the system absorbs heat, the
surroundings are losing heat and, therefore, the entropy change of the surroundings, ∆Ssurr, must be
negative.

2.3 Adiabatic Processes

An adiabatic process is one in which no heat is absorbed or given out. Therefore, by definition, dS = 0
for an adiabatic process and so, adiabatic processes are also known as isentropic processes. For an ideal
gas undergoing an adiabatic expansion, the following relationships hold true:

ViT
CV,m/R
i = VfT

CV,m/R
f (26)

PiV
γ
i = PfV

γ
f

where γ = CP,m/CV,m.

2.4 An Example

One mole of an ideal gas is initially at 10 bar and 298 K. It is allowed to expand against a constant
external pressure of 2 bar to a final pressure of 2 bar. During this process, the temperature of the gas
falls to 253.2 K. Find ∆U,∆H,∆S, ∆Ssurr, and ∆Suniv for the process. Assume that the thermal
surroundings remain at 298 K throughout.

Recall that the entropy change for the system can be calculated only along a reversible path. There are
obviously several reversible paths that can be constructed between the initial and final states in this case.
Let us consider four of them. You must sketch these paths on a PV diagram so that you can visualize
them.

2.4.1 Isothermal expansion to the final volume followed by constant volume cooling to the final
temperature:

∆U = 0+ CV,m (Tf − Ti) =
3

2
R(253.2− 298) = −558.7 Joules mol−1

∆H = 0 +CP,m (Tf − Ti) =
5

2
R(253.2− 298) = −931.2 Joules mol−1

∆S = R ln

(
Vf

Vi

)
+ CV,m ln

(
Tf

Ti

)
= R ln

(
10.526

2.478

)
+ 3

2
R ln

(
253.2

298

)
= 12.026 − 2.032 = 9.994

Joules K−1 mol−1

6



2.4.2 Isothermal expansion to the final pressure followed by constant pressure cooling to the
final temperature:

∆U = 0+ CV,m (Tf − Ti) =
3

2
R(253.2− 298) = −558.7 Joules mol−1

∆H = 0 +CP,m (Tf − Ti) =
5

2
R(253.2− 298) = −931.2 Joules mol−1

∆S = R ln

(
Pi

Pf

)
+ CP,m ln

(
Tf

Ti

)
= R ln

(
10.0

2.0

)
+

5

2
R ln

(
253.2

298

)
= 13.381 − 3.386 = 9.995

Joules K−1 mol−1

2.4.3 Isothermal expansion to (P0,V0) followed by adiabatic expansion to the final state:

Note that we need to find the intersection of the isotherm that passes through the initial state and the
adiabat that passes through the final state, which occurs at (P0, V0) at the temperature of the isotherm,
i.e., at Ti. Using the relationships provided above for adiabatic processes, we get

V0T
3/2
i = VfT

3/2
f ;

V0 = 10.526L×

(
253.2

298.0

)
3/2

= 8.244 L

∆U = 0+ CV,m (Tf − Ti) =
3

2
R(253.2− 298) = −558.7 Joules mol−1

∆H = 0 +CP,m (Tf − Ti) =
5

2
R(253.2− 298) = −931.2 Joules mol−1

∆S = R ln

(
V0

Vi

)
+ 0 = R ln

(
8.244

2.478

)
= 9.994 Joules K−1 mol−1

2.4.4 Constant pressure heating to the final volume followed by constant volume cooling to the
final pressure:

The gas will have to be heated to T0 = 1266 K in order for it to reach a volume of 10.526 L at 10
bar pressure. Therefore,

∆U = CV,m (T0 − Ti) + CV,m (Tf − T0) =
3

2
R(1266− 298) + 3

2
R(253.2− 1266) = −558.7 Joules

mol−1

∆H = CP,m (T0 − Ti) + CP,m (Tf − T0) =
5

2
R(1266 − 298) + 5

2
R(253.2 − 1266) = −931.2 Joules

mol−1

∆S = CP,m ln

(
T0

Ti

)
+CV,m ln

(
Tf

T0

)
= 5

2
R ln

(
1266

298

)
+ 3

2
R ln

(
253.2

1266

)
= 9.995 Joules K−1 mol−1

Yet another path you might try on your own is constant volume cooling to the final pressure followed
by constant pressure heating to the final temperature.

In each of these cases, we have verified that ∆U,∆H,∆S are the same, thus proving that they are
independent of the path taken, as any state property should be. We now have to find the entropy change
of the surroundings.
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2.4.5 Entropy change of the surroundings:

The actual process is the expansion of the gas against a constant external pressure of 2 bar. For this
process, according to the first law,

∆U = qact −Pext(Vf − Vi).

Therefore, qact = ∆U +Pext(Vf −Vi) = −558.7+ 2.0(10.526− 2.478)×
8.3143

0.083143
Joules mol−1 =

1050.9 Joules mol−1.

Now, using the definition of ∆Stherm, we get

∆Ssurr = −qact/Tsurr = −1050.9 Joules mol−1/298 K = −3.526 Joules K−1 mol−1.

Therefore, ∆Suniv = ∆S +∆Ssurr = 6.468 Joules K−1 mol−1.

This is, therefore, a spontaneous process.
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